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ABSTRACT
Understanding the thermal properties of disordered systems is of fundamental importance for condensed
matter physics - and for practical applications as well. While quantities such as the thermal conductivity
are usually well characterised experimentally, their microscopic origin is often largely unknown - hence
the pressing need for molecular simulations. However, the time and length scales involved with thermal
transport phenomena are typically well beyond the reach of ab initio calculations. On the other hand, many
amorphousmaterials are characterised by a complex structure, which prevents the construction of classical
interatomic potentials. Oneway to get past this deadlock is to harnessmachine-learning (ML) algorithms to
build interatomic potentials: these can be nearly as computationally efficient as classical force fields while
retaining much of the accuracy of first-principles calculations. Here, we discuss neural network potentials
(NNPs) and Gaussian approximation potentials (GAPs), two popular ML frameworks. We review the work
that has been devoted to investigate, via NNPs, the thermal properties of phase-change materials, systems
widely used in non-volatile memories. In addition, we present recent results on the vibrational properties
of amorphous carbon, studied via GAPs. In light of these results, we argue that ML-based potentials are
among the best options available to further our understanding of the vibrational and thermal properties of
complex amorphous solids.
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1. Introduction

The thermal properties of disordered solids are a problem of
great interest in solid-state physics and materials science
[1–6]. Many quantities of practical relevance, such as the ther-
mal conductivity of a material, are largely determined by the
underlying vibrational properties [7–9]. In crystals, which ex-
hibit periodic long-range order, the vibrational excitations are
likewise periodic and described by quantised lattice vibrational
modes, so-called phonons [10,11]. In amorphous systems, the
absence of long-range order leads to a coexistence of localised
vibrations and propagating, plane wave-like modes. This poses
a significant challenge for molecular simulations, as large struc-
tural models (typically containing between one thousand and
a million atoms) are needed to avoid imposing an artificial
length scale on the structural and vibrational properties of the
system [12,13]. In fact, any atomistic simulation of amorphous
matter must be performed in a simulation box with periodic
boundary conditions that does have translational symmetry. In
addition, we shall see that different computational techniques
may be necessary to investigate, say, the different mechanisms
of heat conduction in complex disordered systems.

According to the labelling introduced by Allen and Feld-
man (AF) [14], the entirety of vibrational modes (‘vibrons’) in
amorphous solids consist of localised and extended vibrations
(‘locons’ and ‘extendons’, respectively). The latter can be further
labelled as ‘propagons’ or ‘diffusons’ according towhether ornot
their wavenumber ω is lower (propagons) or higher (diffusons)
than the so-called Ioffe-Regel crossover frequencyωco, forwhich
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their mean-free path is comparable to the wavelength [15].
This is illustrated in Figure 1 for the prototypical example of
amorphous silicon (a-Si). a-Si can be considered as a rela-
tively ‘simple’ amorphous solid, in that its structure can be
approximated solely in terms of tetrahedral units (Figure 1(a))
[16]. And yet, even this prototypical amorphous solid shows
a complex vibrational landscape. Figure 1(b) illustrates how
the a-Si vibrational density of states (VDOS) originates from
contributions by different types of vibrons. It is also worth
noting that theAF framework applies to (quasi)harmonic solids,
thus neglecting the contribution of non-harmonic motions,
usually described by two-level states [17,18]. While the latter
usually play very little role in determining, e.g. the thermal
conductivity at room temperature, their mention should help
to emphasise the sheer complexity of the vibrational landscape
of disordered systems (as compared to crystals).

Vibrational properties of amorphous solids, with their ad-
mittedly complicated taxonomy, are by far not just of academic
interest: they have direct impact on real-life applications. Win-
dow glasses are one familiar example: their thermal expansion,
thermal-shock resistance and thermal conductivity are all in-
timately connected with their atomic-level structure [20–22],
and thus with their vibrational properties. Another important
example is given by glassy Li-ion batteries, where the electronic
contribution to the thermal conductivity is often non-negligible,
and the thermal stability of thematerial heavily influences device
performance [23–27]. How heat is conducted and dissipated
through an amorphous matrix is also of great relevance in the
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(a) (b)

Figure 1. (Colour online) (a) A 512-atom structural model of amorphous silicon (a-Si), taken from Ref. [19]. The tetrahedrality of the network of silicon atoms (red spheres)
is highlighted via the coordination polyhedra. (b) Taxonomy of vibrations in glasses and their contributions to the vibrational density of states (VDOS; this sketch is based
on Ref. [14]), illustrated for the prototypical case of a-Si.

context of data storage, as the new generations of non-volatile
memories based on phase-change processes deal with active
volumes only a few nanometres switched by voltage-induced
heat pulses [28,30,31]; we will re-visit this exciting class of
materials below. Thus, there is a need to better understand
the vibrational and thermal properties in nanostructures and
nanoconfined environments.

Molecular simulations offer a unique opportunity to ob-
tain microscopic insight into the origin of thermal properties
– including disordered systems. This is of clear technological
interest, as there are ways to alter, say, the thermal conductivity
of a given solid, by tuning the extent of disorder (via dop-
ing, or intercalation, or nanostructuring) [32]. Computational
investigations can thus contribute to connect the molecular-
level details ofmaterialswithmacroscopic functional properties,
complementing and guiding experiments and applications.

In principle, ab initio simulations (typically based onDensity
Functional Theory, DFT [33]) would be the tool of the trade
to compute properties such as the electronic contribution to
the thermal conductivity or, as we shall see in Section 3.2, the
thermal boundary resistance at interfaces. Unfortunately, the
computational requirements to compute properties such as the
thermal conductivity are often well beyond the reach of ab initio
calculations. For instance, estimating the thermal conductivity
for the phase-change material GeTe (Section 3.1.1) required a
4096-atom model and a molecular-dynamics (MD) simulation
on a nanosecond timescale. This MD run involved millions of
individual time steps, at each of which the forces on atoms need
to be evaluated [34] – it becomes immediately clear why this
is not feasible with DFT, which requires very significant effort
to converge the wave function of even one single 4096-atom
snapshot. Thus, one is typically forced to resort to classical
MD, which however poses yet another major issue: that of the
availability and accuracy of parametrised force fields. For simple
systems, fairly accurate force fields are typically available [35–
40]. The same holds for a number of covalent glasses such
as silica, for which a number of viable options do exist [41–
43]; furthermore, empirical potentials can be significantly im-
proved by physically and chemically motivated modifications,
such as environment-dependent cutoff radii [44]. However,
the situation is dramatically different when dealing with more

complex materials: multicomponent alloys, Li-ion conducting
glasses and chalcogenide glasses for electronic applications are
all typically characterised by diverse local atomic environments
and varying degrees of disorder – including extended struc-
tural defects. Crafting accurate interatomic potentials for such
systems is a formidable challenge, one that has been worrying
materials scientists for decades.

One way to harness the computational efficiency of classical
MDwhile retaining a good deal of the accuracy of ab initio sim-
ulations is to take advantage of machine learning (ML). These
are exciting times for the ML community, as these algorithms
are quickly spreading through an impressive number of dis-
ciplines and technologies [45–48]. In the context of molecular
simulations,ML algorithms are used as particularly clever fitting
tools to obtain interatomic potentials, starting from data-sets of
configurations and (typically) energies computed ab initio [49].
We shall see that this opens a wealth of possibilities, including
an unprecedented opportunity to study thermal properties of
complex amorphous solids by means of molecular simulations.

In this Review, we highlight emerging applications of ML-
based interatomic potentials (MLIPs) to investigate vibrational
and thermal properties of amorphous solids. In particular, we
focus on the prototypical phase-change material GeTe, which is
of relevance for non-volatile memory applications. We shall see
that MLIPs allow not only to compute properties such as ther-
mal conductivity and thermal boundary resistance, but also to
cross-validate results from different computational techniques.
We also take a quick survey of amorphous carbon, a struc-
turally quite surprisingly complex system for which an MLIP
has recently been constructed. We discuss the need for these
sort of potentials, their limitations and their unique importance
in helping us understanding the microscopic subtleties that rule
thermal transport in disordered systems. It is worth noting at
this stage that ML algorithms have also been used to predict
the thermal properties of materials based on large experimental
datasets [50,51]. This is a fascinating topic but has little in
common with the construction of interatomic potentials – as
such, it will not be covered in this work.

The content is organised as follows: we start in Section 2
by introducing ML-based interatomic potentials, focusing on
two approaches relevant for our ownwork, viz. Neural Network
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Potentials (NNPs) andGaussianApproximationPotentials (GAPs).
In Section 3, we review the body of work devoted to unravelling,
by means of a NNP, the thermal properties of the phase-change
material GeTe. Particular emphasis will be on the thermal con-
ductivity and the thermal boundary resistance. In Section 4, we
present recent work based on a GAP for amorphous carbon and
explore future directions. In Section 5, we argue that MLIPs
can constitute the way forward to tackle molecular simulations
of thermal properties of complex amorphous solids. We also
address the limitations of MLIPs when it comes to dealing with
high levels of material complexity.

2. Machine learning for atomistic simulations: why
and how

The thermal properties of amorphous solids are an excellent
example of a challenges for molecular simulations. In this case,
accuracy is crucial just as much as computational efficiency: the
former, to treat the subtleties of the vibrational landscape; the
latter, to enable simulations on large length/long time scales (nm
and ns respectively). Accuracy is usually associated with first-
principles (ab initio) calculations, computational efficiencywith
classical molecular dynamics. The question, now, is how to get
the best of both worlds?ML-based methods offer a solution, and
as such they have been attracting ever-growing interest over
recent years [52–62].

Let us start with a word of caution. ‘Machine learning’ as
such is doubtlessly a trending concept, far beyond fundamental
research: these days, the general public is perfectly aware, if
not of what ML is exactly, surely of what we use it for. Pat-
tern recognition is a popular example [63], together with data
analysis [64–66], web search engines and personal assistants,
not to mention the celebrated victory of AlphaGo against a
human player [67]. However, for the purpose of constructing
interatomic potentials,MLalgorithms are littlemore or little less
than fairly clever fitting tools. Amore detailed review discussing
MLIPs can be found, e.g. in Ref. [49]; we here limit ourselves to
the basic principles.

MLIPs perform a high-dimensional fit to a given potential-
energy surface (PES), and therefore, the starting point is to build
a database containing roughly 102–104 small configurations
(each containing maybe a hundred atoms or molecules), for
which it is feasible to compute energies and forces ab initio.
Once this database has been created, the connection between
atomic structure and potential energy has to be encoded in a
suitable form to be fed into the ML algorithm. This requires
so-called descriptors, mathematical objects that obey certain
requisites and represent the local atomic environments (LAEs):
imagine sitting on a particular atom and trying to describe
everything you see up to a certain cutoff radius (but no further).
Once the descriptors have been settled, the ML algorithm feeds
upon the information in the database and interpolates, for any
arbitrary LAE, its contribution to the potential energy of the
system. At this stage, one can hence calculate energies (and,
importantly, forces) for any number of LAEs – that is, one
can treat even very large systems with trivially linear scaling
behaviour.

The construction of the ab initio database is largely indepen-
dent from which particular ML method and descriptors are to

be used.While the choice of input structures is by far not trivial,
and crucial for the success of any MLIP, creating the database
ultimately requires a huge number of ab initio simulations.
The shape and the properties of the descriptors have to be
consistent with the core of the particular ML approach. While
multiple options do exist that can be used with the same ML
algorithm, the descriptors can substantially differ from one
implementation to another. Similarly, a rather diverse array
of algorithms exist, using artificial neural networks, Gaussian
processes, etc. – so different MLIP architectures employ very
different recipes. As such, these potentials cannot be easily used
across different ML implementations. Importantly, though, the
ab initio data could in principle be shared.

2.1. Implementations: neural-network potentials and
gaussian approximation potentials

Agrowing number of algorithmic frameworks exist to construct
MLIPs; the interested reader is referred to a detailed overview
given by Behler [49] as well as several very recent examples
that are beyond the scope of this work [68–70]. Here, we shall
only consider two arguably successfully used approaches thatwe
have employed in our own research: namely, artificial neural-
network potentials as well as Gaussian approximation poten-
tials. We do not aim to recommend one over the other – both
are useful, and different, approaches towards a similar problem.

NNPs take advantage of feed-forward neural networks to
construct a PES starting from the energies of the configurations
in the reference database. They provide an analytic represen-
tation of the PES, so that computing the forces acting on each
atom in the system (which is the basis of MD simulations) is
simply a matter of taking the derivative with respect to the
atomic positions. The central approximation of NNPs is that
the total energy E of a system can be decomposed into a sum of
individual contributions εi,

Etotal =
∑
i

εi, (1)

where each of these atomic energies is a function of the LAE of
the i-th atom, and the latter is in turn defined using a set of
descriptors. NNPs typically employ combinations of so-called
Atom-centred Symmetry Functions (ACSFs) for this task [71]:
these functions take into account the distances and angles be-
tween pairs and triplets of atoms, respectively, and their combi-
nation results in a multi-body description of an LAE.

Note that the above expression assumes locality (‘short-
sightedness’); that is, it assumes that the energetics and forces
of a given atom depend only on its immediate environment as
specified by a cutoff radius. The latter typically encompasses the
first and second coordination shells, leading to cutoff radii of the
order of 5–10 Å. This approximation applies to GAPs as well,
and it is valid for many covalently bonded and metallic mate-
rials, while it faces challenges when long-range (ionic and/or
dispersion) interactions are present. The latter can implicitly
be taken into account by producing a data-set with dispersion-
corrected/included exchange-correlation functionals. The as-
sumption is that the contributions of such long-range forces lead
structural modifications of the systems which can be described
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within the framework of LAEs – which may or may not be
an accurate assumption. In some cases, even a ‘standard’ DFT
methodologymay lead to a reasonable description: for example,
the Local Density Approximation (LDA) functional gives an ac-
ceptable value for the inter-layer distance in graphite (one of the
reasons it was chosen for the carbon potential described below),
whereas standard GGA functionals will fail at this task [72,73].
Care must be taken in choosing the underlying computational
method, as always. The situation is much more complex when
dealing with charged systems, where electrostatic interactions
play a central role. In that case, charges have to be taken into
account. In the case of NNPs, this is done by introducing a
dedicated set of neural networks dealing exclusively with the
electrostatics. This approach has been successful in e.g. obtain-
ing a NNP for zinc oxide [74].

In the GAP framework, the total energy is likewise decom-
posed into a sum of individual contributions εi, dependent on
the LAE of the central atom. In this case, the LAE is encoded
by a so-called ‘descriptor vector’, which we denote by �qi. The
choice of these vectors is arbitrary in the first instance, and
depends on the problem at hand. A simple descriptor for a
diatomic molecule could be the (scalar) distance between the
two atoms. For more complex atomistic systems, in partic-
ular for condensed-phase materials, the recently introduced
Smooth Overlap of Atomic Positions (SOAP) framework [75]
has proved successful. Let us assume again that the total energy
is a sum of local energies (Equation (1)), and that the latter are
expressed in terms of some arbitrary and (possibly) unknown
basis functions {φt}, combined using linear combination coeffi-
cients, αt .

εi(�qi) =
∑
t

αtφt(�qi) ≡ εi(�α, �qi) (2)

These coefficients are determined during the construction of the
potential, by fitting to a large database of DFT ‘training’ points
(index t), and afterwards kept fixed and tabulated. If we now
assume that the αt are normally distributed, we can determine
the so-called covarianceof two local energies, comparing anLAE
from the training data to a new one, and so finding the energy
without specifically knowing the basis functions themselves. All
that is needed to know is an expression for the covariance, also
called a kernel.

In practice, only a small number of representative, so-called
‘sparse’, points are selected from the entire training database.
This choice can be made at random, or using advanced tools
such as CUR decomposition [76], which ensures that the se-
lected points are distinct from one another to the greatest de-
gree possible. In the case of NNP, the vast majority of the
structures contained in the training database is usually taken
into account. While a number of technicalities can be used
to e.g. avoid/include unnecessary/representative regions of the
configurational space, the sparsity of the data-set does not play
a key role in NNPs – as opposed to the GAP framework.

The idea of using neural networks to fit a PES dates back
to the 1990s (see e.g. Ref. [55]), whereas a framework capable
of dealing with a high-dimensional PES (say, a disordered solid,
rather than a singlemolecule in the gas phase) was introduced in
2007 by Behler and Parrinello [77]. Since then, NNPs have been
created for a diverse range of systems, from metal surfaces [78]
to water [79].

The GAP framework was introduced in 2010 by Bartók et
al., and interatomic potentials for the bulk phases of carbon,
silicon and germanium were presented at that time, as well as
initial proofs-of-concept for GaAs and iron [80]. Subsequently,
Szlachta et al. showed how training databases for GAPs can be
constructed in a systematic fashion [81], and such ideas has
been a paradigm inMLIP development until today. In that case,
fitting a GAP model for tungsten, they started with bulk unit
cells and then introduced supercell expansions, point defects,
surfaces and dislocations: indeed, the model can ‘learn’ by in-
corporating additional data [81]. A GAP specifically targeted at
an amorphous system was introduced very recently [82], and
we will describe this in detail below (Section 4). The GAP code
is freely available for non-commercial research at http://www.
libatoms.org. It consists of two parts: a ‘prediction’ code, which
takes parametrisedGAPfiles and uses them to drive simulations
(this can be run as a stand-alone program, or via an interface
to LAMMPS [83]), and the ‘training’ code which generates a
new GAP model from a given set of reference data and input
parameters.

It is worth noting that expanding an existing MLIP (for
example, from the bulk to surfaces) is usually a one-time invest-
ment: once the new DFT reference data have been generated,
the potential can be run in a largely similar fashion, and – in
the case of GAP – maybe doubles the number of sparse points
(with which the speed of the potential scales). A higher price in
terms of additional configurations has usually to be paid when
extending a NNP to incorporate, e.g. a new phase of the system.
Let us say it clearly: MLIPs are fitting tools. They can interpolate
the PES, using the information contained in the reference data-
set, but they cannot extrapolate to regions of configurational
space far outside the database. For example, an MLIP needs to
have ‘seen’ surfaces, not just bulk phases, to enable accurate
predictions of surface energies [81]. This is often an acceptable
price to pay for the largely increased flexibility of the resulting
MLIPs.

MLIPs are not limited to inorganicmaterials, and neither are
they limited to DFT, but can be fitted to any suitable quantum–
mechanical reference data-set. In the case of GAP, it was shown
how high-quality QM data for liquid water can be used to learn
for the error of DFT with respect to highly accurate correlated
quantum-chemistry methods [84]. In turn, this enables pre-
dictions at close-to-DFT cost (DFT computations still being
required at runtime and forming the ‘core’ of the potential),
but approaching the accuracy of the much more advanced QM
method. Very recently, a NNP for molecular solids was pro-
posed, giving access to a wide range of different materials built
from organic molecules (containing carbon, hydrogen, oxygen
and nitrogen) [85].

2.2. What are the limits?

ML-based Interatomic Potentials enable large-scale molecular
simulations with quasi-ab initio accuracy. This outstanding ca-
pability comes at a price, though; namely the sheer computa-
tional effort that is usually needed to build (and to expand)
the reference data-set. As an example, a NNP recently used to
investigate the crystallisation kinetics of GeTe nanowires are
based on a data-set of about 45,000 configurations – that is,

http://www.libatoms.org
http://www.libatoms.org
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45,000 DFT calculations were performed to obtain a reliable
NNP [86]. This is perhaps an extreme scenario, in that the
above-mentioned NNP can deal with bulk phases as well as
surfaces and nanostructures – requiring a huge number of con-
figurations to sample the vast configuration space. However, it
is safe to say that the most time-consuming part in the creation
of an MLIP is the creation of the data set.

Furthermore, a number of technical issues arise with the
fitting procedure itself. As a rule, the more complex the system
(that is, themore diverse and extended the LAE), themore these
issues become important.However, we shall see in Section 4 that
even a supposedly simple disordered system, such as amorphous
carbon, can display a diverse variety of structural features, which
lead in turn to a complex interplay between the contribution of
the different vibrons (e.g. propagons and diffusons, see Fig-
ure 1(b)) to the thermal properties of the material. Here follows
a non-comprehensive list of the limitations of MLIPs to date:

• Extrapolation: As discussed in Section 2.1, MLIPs cannot
extrapolate the PES for regions of configurational space
that are not represented in the data-set at all.

• Sparse data-sets: numerically speaking, it is not easy to
produce a MLIP starting from a very sparse data set, i.e.
a data-set containing configurations, say bulk cells next
to surfaces, whose structures and energies differ strongly.
This calls for special measures to be put in place, and
is the subject of much of the ongoing research aimed at
improving MLIPs.

• Long-range interactions: As discussed in Section 2.1, tak-
ing into account, e.g. dispersion interactions requires spe-
cial care.

• Chemical complexity: Multicomponent systems, such as
ternary or even higher alloys and compounds, are difficult
to describe with MLIPs. This is because the number of
LAEs increaseswith the number of components (and dras-
tically so with each added species), and with the increasing
difficulty to map a specific LAE onto its energy.

• The accuracy of the underlying reference data: MLIPs are
normally fitted to DFT energies and forces, aiming to
reproduce them as closely as possible, and often tacitly as-
suming that the reference data are correct. There are, how-
ever, several instances where simple density-functional
approximations fail [87–89], and then likewise the MLIP
must fail – observing better agreement with experiment
than the DFT result will be merely a fortuitous coin-
cidence. In the future, we expect that this can be par-
tially alleviated by fitting to higher-level DFT or even
wavefunction-based data, as already exemplified for water
at the CCSD(T) level [84].

In light of these limitations, it is thus our (very personal)
opinion that the construction of aMLIP should only be pursued
if:

(1) No other options are available. In many cases, empirical
force fields do allow fairly reliable calculations of thermal
properties, and nowadays ab initioMD can deal with up
to 500 particles for up to 1–2 ns;

(2) The resulting MLIP would allow the investigation of
a diverse array of functional (mechanical, thermal,

dynamical...) properties – and thus to pay off in the
long run, as opposed to a one-off study. Indeed, con-
sidering the cost of creating the reference data-set, the
construction of an MLIP is a substantial investment.
Several months are typically needed to ‘learn’ crystalline
elemental solids, and building an MLIP for the whole
phase diagram of a molecular system (such as water) can
require several years. A scenario where the construction
of MLIPs did pay off is that of the phase-change material
GeTe, which will be discussed in the next section.

3. Thermal properties of phase-changematerials

The term ‘phase-change material’ (PCM) can, annoyingly
enough, refer to two entirely different classes of systems and
applications: PCMs for energy storage (compounds with a high
enthalpy of fusion, used to store energy as latent heat) [90,91],
and PCMs for data storage [92–94]. The latter, and only the lat-
ter, are the topic of this review. They are typically chalcogenide
alloys, with compositions along the quasi-binary tie-line that
connects the two binary prototype systems GeTe and Sb2Te3.
The amorphous and crystalline phases of these compounds
display a sharp contrast in terms of both optical reflectivity and
electrical resistance, and can thus be used to store binary bits of
information, zeroes and ones, as structural states of thematerial.
Moreover, the phase transition between the amorphous and
crystalline phases (and vice versa) takes place in a matter of
nanoseconds, and it is perfectly reversible up to millions of
cycles. As such, PCMs are widely considered as very promising
candidates for the next generation of non-volatile memories.
Excellent review articles about PCMs in general can be found,
e.g. in Refs. [28–30]; their computational treatment has been
discussed in Refs. [95,96].

The thermal properties of these systems are of key impor-
tance for devices. As illustrated in Figure 2, both the reset and
set processes (writing zeroes and ones, respectively) are induced
by heating, using laser pulses in optical media and voltage-
induced Joule heating in electronicmemories. In addition, ther-
mal cross-talk between different regions is detrimental for de-
vice performance (and limits data density); it is strongly de-
pendent on the thermal conductivity (κ) of both the crystalline
and the amorphous phases. A low thermal conductivity is thus
desirable, not only to avoid such cross-talk but also to min-
imise the electrical current needed to induce the reset and set
processes [30].

Luckily enough, the overwhelming majority of PCMs shows
very low thermal conductivity (typically, κ < 1 Wm−1K−1),
both in the amorphous and crystalline phases [97,98]. The low
value of κ in Ge–Sb–Te crystals is due to strong phonon scat-
tering from randomly distributed point defects [99,100]. For
instance, in GeTe, the variable concentration of Ge vacancies
is responsible for the large spread of the experimental data
reported for its bulk thermal conductivity [100].

Concerning the amorphous phases, it is crucial to determine
whether propagating vibrons characterised by long mean-free
paths exist – and to what extent. These propagons substantially
contribute to the thermal conductivity of, say, amorphous sil-
icon [101], and they are usually absent in nano-structures –
simply because their mean-free path is larger than the
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(a)

(b)

Figure 2. (Colour online) The processes of (a) reset and (b) set upon which phase
change memories are based. In both cases, the active material is heated by either
laser or current pulses above its melting temperature. The rapid (≥ 109Ks−1)
cooling of such a melt leads to the amorphous phase illustrated in (a). Longer (and
less intense) pulses allow for the amorphous phase to crystallise, as depicted in (b).
Adapted from Ref. [30]. Copyright 2007 Nature Publishing Group.

dimensionality of the system [102]. As phase-change memories
rely on active volumes of the material of the order of a few
nanometers only, it is thus important to determine whether the
values of κ measured for bulk amorphous GeTe can indeed
be used to model the thermal properties of this compound in
nano-scaled devices.

Despite its seemingly simple chemical composition, amor-
phous GeTe displays an intriguing coexistence of tetrahedral
and defective octahedral LAO [103–105] (illustrated in
Figure 3(c)), extended defects such as chains of homopolar Ge–
Ge bonds [106], and nano-voids [107,108]; all of these intro-
duce significant challenges for materials modelling and nor-
mally requires a description at the ab initio level. While the
vibrational properties of this system can be indeed described
by ab initio simulations in small structural models (up to ∼
500 atoms) [104,109], a reliable description of macroscopic
thermal properties requires much larger systems (containing
103-104 atoms) and longer simulation times (fractions of ns).
This is necessary to take into account the above-mentioned
disorder and diversity in local environments, and to enable
thermal-conductivity calculations bothby equilibriumandnon-
equilibriumMD – as we shall see in the next sections.

A sizable body of experimental work has been devoted to the
thermal properties of PCMs (see, e.g. Refs. [110–113]). In terms
of simulations, calculations of κ for a few crystalline phases
can be found in the recent literature [100,114]. Concerning the
amorphous phases, however, the only comprehensive study to
date is about GeTe, chiefly because a MLIP for this compound

has been constructed in 2012 [115]. This MLIP belongs to the
family of NNPs, and takes advantage of the approach of Behler
and Parrinello [77]. Originally developed for the bulk phases
(liquid, crystalline, amorphous) of GeTe, the potential has been
recently extended to take into account free surfaces and nano-
structures [86]. It allows to perform massively parallel MD
simulations: good scaling up to 512 cores can be achieved for
systems containing∼ 104 atoms, which in turn can be simulated
for as long as several nanoseconds. Anumber of applications en-
abled by this potential have been reported, addressing crystalli-
sation kinetics [116] or dynamical properties of the supercooled
liquid [106,117], for example. This NNP has been extensively
validated in terms of structural and, most importantly here,
vibrational properties compared with DFT calculations [115].
Figure 3(a) compares the VDOS for a 4096-atom model of
amorphous GeTe with DFT data for amuch smaller (216-atom)
model. The agreement is remarkable, especially considered that
the different contributions to the total VDOS originating from
the different LAO are correctly captured by the NNP. The same
holds for the Inverse Participation Ratio (IPR; Figure 3(b)),
which quantifies the degree of localisation of each vibron, and
is defined as

IPRj =
∑N

i=1

∣∣∣ ē(j,i)√
mi

∣∣∣4(∑N
i=1

|ē(j,i)|2
mi

)2 , (3)

where ē(i, j) is the j-th vibron eigenvector for the i-th atomwith
massmi. The value of this IPR thus ranges from1/N (completely
delocalised) to unity (localised on a single atom). Note that the
high IPR values for ω > 200 cm−1 are due to vibrons strongly
localised on tetrahedral Ge [104] atoms.

3.1. The thermal conductivity of amorphous GeTe: three
options

Experimental values for the thermal conductivity (κ) of a-GeTe
range from0.2 to 0.4Wm−1K−1 [97,119,120]. As for the simula-
tions, we have different options: equilibrium molecular-
dynamics (EMD), non-equilibrium molecular-dynamics
(NEMD), and the analysis of both diffusons and propagons by
means of AF theory and the Boltzmann Transport Equation
(BTE), respectively. The computational efficiency of MLIPs has
now allowed us to compare the κ values calculated by these
different approaches side-by-side. This is a unique opportunity
to strengthen the reliability of molecular simulations in investi-
gating thermal properties of amorphous solids. In the following
sections, we shall consider each of the three above-mentioned
computational options.

The total thermal conductivity in a system is given by

κ = κLattice + κElectronic, (4)

where the lattice thermal conductivity originates from vibrons
(both in insulating and metallic systems), and the electronic
thermal conductivity is due to free conduction electrons (thus
relevant for metallic systems only). Amorphous GeTe displays
a pseudo-gap in the electronic density of states [121], and as
such the contribution of κElectronic can reasonably be considered
as being negligible. In fact, the calculations of κ we are about
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(a) (b) (c)

Figure 3. (Colour online) (a) VDOS of a 4096-atommodel of amorphous GeTe; both the structure and the vibrational properties were obtained using a NNP. The projections
of the total VDOS on different atomic species (Getetra/octa refer to Ge atoms sitting in tetrahedral and defective octahedral LAEs, see panel (c)) is also reported. The results
are compared with those obtained for a smaller (216-atom) model via DFT calculations. (b) Inverse participation ratio (IPR, see text) of phonons (or vibrons) in amorphous
GeTe. Adapted from Ref. [118]. Copyright 2012 American Physical Society. (c) Coexistence of tetrahedral and defective-octahedral coordination motifs in GeTe. Adapted
from Ref. [105]. Copyright 2014 Wiley-VCH.

to discuss refer to κLattice only – and we shall see that those
account for the whole value of the total κ , confirming the above
assumption. It is also worth noticing that κ in principle is
a tensorial quantity. This is especially relevant for crystalline
systems: for instance, in the well-ordered crystalline phase of
Ge2Sb2Te5, weak Te–Te bonds along the hexagonal c-axis lead
to a strongly anisotropic thermal conductivity [100].

3.1.1. Green–Kubo relation
Transport coefficients, such as κ , can be computed via the so-
called Green–Kubo relation from the integrals of specific time-
correlation functions. For the thermal conductivity [122],

κ = 1
3kBT2�

3∑
α=1

∫ ∞

0
〈Jα(0) · Jα(t ′)〉dt ′, (5)

where �, α, and Jα(t ′) stand for the volume of the simula-
tion box, the α-th Cartesian coordinate and the energy flux,
respectively. The latter is also known as the heat flux or the
(microscopic) heat current, and it can in turn bewritten as [122]

Jα(t ′) =
N∑
i=1

εi(t ′) · vi,α(t ′) −
N∑
i=1

3∑
β=1

σi,αβ(t ′) · vi,β(t ′), (6)

where εi(t ′), vi,α(t ′) and σi,αβ are the total energy of the i-th
atom, its velocity at time t ′, and the element of the atomic
stress tensor, respectively. The first term in Equation (6) is
commonly referred to as a convective term, as it accounts for the
heat current originating from atomic motion (convection). It is
the main contribution to Jα(t ′) in gases, important in liquids,
but basically negligible for solids, where the self-diffusion is
exceedingly low. We thus consider exclusively the second term
in Equation (6), which originates from interatomic interactions
and it is associatedwithheat conduction; it is commonly labelled
as the virial term.

Note that partitioning the total stress into single-particle
contributions depends on the particular form of the interatomic
potential [123]; in some cases, more than one choice is available.
However, in the framework of Behler–ParrinelloNNPs, the total

energy of the system is written as a sum of individual atomic
energies, so that the definition of an atomic stress follows in a
straightforward manner. Note, also, that Green–Kubo relations
can be used in any equilibriumensemble, albeit the specific form
ofJα(t ′) is different within different ensembles [122]. Equation
(6) refers to the canonical ensemble (‘NVT’).

The time-correlation function in Equation (5) can be ob-
tained by EMD. This is straightforward in principle, and yet
substantial statistics are needed to address the tails of the cor-
relation function of the energy flux – and thus to converge
the integral in Equation (5). One way to improve numerical
accuracy and achieve faster convergence is to rewrite Equation
(5) by taking advantage of the Einstein relation [124]:

κ = 1
6kBT2�

lim
t→∞

d
dt

N∑
i=1

3∑
α=1

〈[ζi,α(t) − ζi,α(0)]2〉, with (7)

ζi,α(t) − ζi,α(0) =
∫ t

0
Ji,αdt ′ (8)

In the case of a-GeTe, the truncation time t in the integral
above was set to 40 ps (Figure 4(a)), and yet 2 ns-long (corre-
sponding in this case to 1,000,000 time steps) simulations were
necessary to accumulate sufficient statistics to obtain the value
of κ reported in Figure 4(d), which is converged within 0.05
Wm−1K−1. A number of different methods, such as Homo-
geneous Non-Equilibrium MD, have been recently proposed
to overcome the numerical challenges imposed by the original
Green–Kubo approach [127].

3.1.2. Non-equilibriummolecular dynamics
A perhaps more intuitive approach to the calculation of κ is to
introduce an actual temperature gradient in the system. Obvi-
ously, the resulting simulationswould be non-equilibriumones,
but the thermal conductivity can still be evaluated, e.g. via the
stationary heat flux density [125–127] from NEMD. For GeTe,
Campi et al. employed the so-called reverse NEMD scheme
of Müller–Plathe [128]: a cold and a hot source are placed at
the edges of the simulation box, separated by a region of fixed
atoms (Figure 4(c)). Note that, as a whole, the simulation box
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(a) (b)

(c) (d)

Figure 4. (Colour online) (a) Normalised auto-correlation function of the energy-current operator. The inset shows the MSD of J according to Equation (8). (b) Decay
of the energy of a vibron of a-GeTe at ∼ 150 cm-1 as a function of time. Adapted from Ref. [130]. (c) Temperature profile in a reverse NEMD simulation of bulk a-GeTe.
Grey, blue and red shaded regions depict the fixed atoms, the cold source and the hot source, respectively. The continuous dark-blue line represents the linear fit of the
data. (d) The thermal conductivity κ of amorphous GeTe calculated by means of a NNP using three different approaches. Equilibrium MD simulations taking advantage
of the Green–Kubo relation (EMD), non-equilibrium MD simulations using the Müller-Plathe approach (NEMD), and quasi-static calculations (AF+BTE) addressing the
contributions of diffusons (according to the Allen-Feldman formalism, AF) and propagons (taken into account by computing the Boltzmann Transport Equation, BTE). In
the case of AF+BTE, the reported value of the thermal conductivity for a given frequencyω∗ has been obtained by summing the contributions of all phonons characterised
byω ≤ ω∗ . Adapted from Ref. [118] - Copyright 2012 American Physical Society.

spans 10 nm (in fact, the largest box considered in Ref. [130]
had dimensions: 24.8 × 24.8 × 397.3 Å). This length scale is
definitely inaccessible to ab initio simulations. Provided that the
temperature profile reaches a converged steady-state condition
(as illustrated in Figure 4(c)), which for a-GeTe required ∼800
ps, the bulk thermal conductivity can be computed simply by
applying (the one-dimensional) Fourier law [129]:

κ = − qα

dT/dα
, (9)

where qα is the (imposed) heat flux along the α direction.
The value of κ for a-GeTe from these NEMD simulations is
0.26±0.05 Wm−1K−1 [130], in excellent agreement with the
outcome of EMD simulations using the Green–Kubo formula
(0.27±0.05 Wm−1K−1) [118].

3.1.3. Allen–Feldman theory and the Boltzmann transport
equation
The equilibrium (Green–Kubo) and non-equilibrium (Müller–
Plathe) MD methods described above take into account all the
vibrations of the system: they do not distinguish, say, between
localised or extended phonons. As discussed in Section 1, how-
ever, different types of phonons contribute to different extents
to the vibrational density of states, and thus, to the thermal

conductivity. It would thus be desirable to understand which
phonons are responsible for the total value of κ . Recalling the
taxonomy illustrated in Figure 1, we have:

κTotal = κLocons + κPropagons + κDiffusons. (10)

In the case of GeTe, we have not taken into account localised
modes (locons). Although such vibrations do populate the high-
frequency tail of the VDOS (see Figure 3(b)), their contribution
to κTotal is negligible, as will be discussed below. κPropagons
can be obtained by solving the linearised Boltzmann transport
equation (BTE) in the single-mode relaxation-time approxima-
tion [131]:

κPropagons = κBTE = 1
3

N∑
j=1

cj · v2g ,j · τj, (11)

where cj, vg ,j and τj are the specific heat per unit volume, the
group velocity and the lifetime of the (harmonic) j-th phonon
calculated at the supercell
 point, respectively.While cj and vg ,j
can be straightforwardly calculated from the dispersion curves
ωj(q) (see, e.g. Ref. [118]), the estimationof the phonon lifetimes
τj typically requires to converge the following auto-correlation
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function:
τj = 2 ·

∫ ∞

0

〈Ej(t)Ej(0)〉
〈Ej(0)Ej(0)〉 , (12)

where Ej(t) = 1
N | ∑N

i=1
√
Miēj,i · v̄i(t)|2 is the kinetic energy

of the j-th mode. Similarly to the auto-correlation function de-
scribed in Equation (5) in the case of theGreen–Kubo approach,
long (2 ns) MD trajectories were needed to converge the values
of τj for a-GeTe, once more highlighting the need for efficient
yet accurate MLIPs. It is also worth noticing that, in the case
of GeTe, the single-mode relaxation-time approximation of the
BTE appears to be valid. In fact, the energy of the phonons does
decay following a single exponential relaxation behaviour (Fig-
ure 4(b)). Other options to estimate the lifetimes τj have been
proposed, albeit most of the formulations have been validated
for crystalline systems only [132–134].

Perhaps surprisingly, in a-GeTe the overwhelming majority
of vibrational modes show a very short mean free path (λj =
vg ,j · τj), no longer than 10 Å [118]. This is radically different
from what has been observed, e.g. in a-Si, where values of λj up
to 102 Å have been reported [101]. This results in a very low
value of κPropagons, viz. 0.01Wm−1K−1, one order of magnitude
smaller than the outcome of both EMDandNEMDsimulations.

In fact, κDiffusons accounts for most of the total thermal con-
ductivity in a-GeTe. Within the theory of AF, each j-th vibron
has a diffusivity [14,135]:

Dα,j = �2

8π2�2ν2i

∑
n �=j

|〈ēj|Jα|ēn〉|2δ(νj − νn), (13)

where 〈ēj|Jα|ēn〉 are the matrix elements of the α Cartesian
component of the energy-flux operator (Equation (6)) between
two (harmonic) normal modes ēj and ēn, with frequencies νj
and νn, respectively. The resulting contribution to the thermal
conductivity is thus frequency-dependent, and it can be written
as [14,135]

κDiffusons = κAF =
N∑
j=1

cj
1
3

3∑
α=1

Dα,j. (14)

As seen in Figure 4(d), κDiffusons is indeed the major contrib-
utor to the thermal conductivity of a-GeTe. This behaviour is in
stark contrast with what has been observed, e.g. for a-Si, where
propagons also play an important role and indeed κTotal ≈
1
2κPropagons+ 1

2κDiffusons [101]. A perhaps simplistic explanation
is that a-Si is, compared to a-GeTe, a rather homogeneous
system characterised by a relatively low degree of disorder [19,
136–138], so that propagons can actually extend over very long
mean-free paths. In contrast, the structure of a-GeTe includes
very different local atomic environments aswell as nano-cavities
and extended defects [103,139]. These structural features scatter
and hinder the spatial extent of the propagons, which in turn
lead to exceedingly low values of κBTE for a-GeTe.

At this point, we hope that the reader would be convinced
that molecular simulations of vibrational and thermal propri-
eties of amorphous solids need to address a number of different,
often non-trivial aspects. Assessing which type of vibrons con-
tribute to the thermal conductivity is a good example, as such in-
sight allows to guide experiments and applications. For instance,

in a-GeTe, the absence of spatially extended propagons suggests
that the value of κ measured for bulk samples can be safely used
tomodel thermal conductivity at the nanoscale aswell – this is of
great practical importance for assessing the device performance.
On the other hand, the substantial contribution of propagons in
a-Si presents the opportunity to tune the thermal conductivity
of the material by nanostructuring.

3.2. Thermal boundary resistance at the
crystal–amorphous interface

We have discussed in Section 3 the importance of the thermal
conductivity for PCM used for non-volatile memories. The
latter ultimately rely on the crystallisation/amorphisation of
materials such as GeTe, so that the thermal boundary resistance
(TBR) between the crystal and the amorphous phase plays a cru-
cial role for device performance. In fact, it is worth investigating
the TBR not only at the crystal/amorphous interface, but also
at the interfaces between the PCM and the other components
of the actual memory cell (dielectrics, such as silicon oxide or
silicon nitride, as well as electrode metals such as TiN and Al).
In some cases, ab initio simulations can be used to study the
TBR at the interface between different crystalline phases [100].
However, computing the TBR between the amorphous phase
and the crystal does, once more, require the help of MLIPs.

As an example, in Ref. [130], the TBR between crystalline
and amorphous GeTe has been calculated by a combination of
ab initio and classical simulations, the latter taking advantage
of the NNP for GeTe discussed above. In this case, the crys-
tal/amorphous interface is a metal/non-metal junction, as the
electrical conductivity of crystalline GeTe is much larger (by
about three orders of magnitude) than that of the amorphous
phase [100]. As such, heat is carried by electrons and phonons
alike in the crystal, but only byphonons in the amorphousphase.
In addition, while in crystalline GeTe the thermal conductivity
originates chiefly from propagons (κTotal ≈ κBTE) [100], we
have seen in Section 3.1.3 that in a-GeTe κTotal ≈ κDiffusons ≈
κAF. A theoretical approach taking this evidence into account
has been developed by Majumdar and Reddy [140], and it is
based on the following expression for the TBR:

TBRTotal = TBRLattice + TBRElectronic, (15)

where TBRLattice and TBRElectronic are the phononic and elec-
tronic contributions to the total TBR. TBRElectronic can be writ-
ten as [140]

TBRElectronic =
(

κElectronic

κTotal

) 3
2 · (κLatticeGe-ph)

− 1
2 , (16)

where the parameter G depends on the electron–phonon cou-
pling constant λe−ph as well as the electronic density of states
at the Fermi level (see, e.g. Ref. [130] for further details). At
this stage, it should be quite clear why we need a mixture of ab
initio and classical simulations to deal with TBR: the calculation
of the electron–phonon coupling constant lies within the remit
of ab initio (DFT) simulations only, whereas large simulation
boxes and long simulation times are needed to extract TBRLattice
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(a)

(b)

Figure 5. (Colour online) (a) Thermal conductivity κ of crystalline (trigonal) GeTe
as a function of the length of the simulation cell L (along the direction of the heat
flux). The contributions to κ , split into perpendicular and parallel (with respect to
the c-axis of the trigonal crystal) components, are reported in the upper and lower
panels, respectively. (b) Temperature profile observed in an NEMD simulation of
the junction between amorphous and crystalline GeTe. The amorphous/crystalline
interface lies (at 25 nm) on the (0001) crystalline plane of the trigonal crystal
(hexagonal cell setup). Adapted from Ref. [130]. Copyright 2015 AIP Publishing
LLC.

in the framework of, e.g. the NEMD simulations that we have
previously discussed.

In the case of GeTe, TBRLattice has indeed been obtained by
means of the same ‘reverse NEMD’ scheme illustrated in Sec-
tion 3.1.2, with additional complexity originating from the fact
that typically more than one crystal/amorphous interfaces exist.
Specifically, Campi et al. considered a-GeTe in contact with
either the (0 0 0 1) or the (2 1̄ 1̄ 0) crystalline plane of the trigonal
crystalline phase. Furthermore, in contrast with amorphous
(and thus usually isotropic) systems, one can expect different
values of the thermal conductivity along different directions: κ
is in fact a tensorial quantity of rank two. Given the symmetry
of crystalline GeTe, the direction z (xy) perpendicular (paral-
lel) to the trigonal axis [100] is of particular importance. The
resulting values of κz and κx = κy are reported in Figure 5(a).
Note that supercells as large as 80 nm were needed to converge
the NEMD simulations. The same can be said for the NEMD
calculations of the actual TBR, which led to the temperature
profile depicted in Figure 4(b): the jump in the temperature
profile for L ≈ 25nm in Figure 5 corresponds to the location of
the junction between the crystalline and the amorphous phases.
Interestingly, it turns out that the electronic contribution to
the TBR is a function of the concentration of Ge vacancies

(a)

(b)

(c)

Figure 6. (Colour online) Modelling amorphous carbon and its key properties by
ML-based and other simulationmethods. (a) Structuralmodels of a-C at 2.0 g·cm−3

(left) and of ta-C at 3.0 g·cm−3 (right), generated by quenching from themelt using
DFT-MD simulations. In both, the coexistence of sp2 and sp3 environments (green
and blue, respectively) is apparent; coordination numbers have been determined
by counting atomic neighbours up to a 1.85 Å cutoff. (b) Count of sp3 atoms, as
defined above, as a function of sample density, comparing results from various
empirical interatomic potentials, as well as our GAP, to experimental and DFT-
based reference data. (c) Same for Young’s modulus: coloured symbols indicate
experimental data from various references (cf. Ref. [82]); results from our GAP are
compared to those of a state-of-the-art empirical interatomic potential. Adapted
with permission from Ref. [82]. Copyright 2017 American Physical Society.

that occur in the crystalline phase of GeTe [100]. These defects
induce the formation of holes in the valence band, thus affecting
the electron–phonon coupling constant. On average, though,
TBRElectronic at the amorphous/crystalline interface is of the
same order of magnitude as the TBRLattice reported for PCMs in
contact with metallic systems such as TiN and Al [100].
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Figure 7. (Colour online) The vibrational density of states (VDOS) of two 216-atom
models of amorphous carbon generated as described in Ref. [82] at two different
densities: 2.11 and 3.37 g/cm3. A comparison between the VDOS computed via GAP
(dashed lines) and that obtained by DFT-LDA calculations (solid lines) is reported.
The experimental VDOS of polycrystalline diamond (DiamondExp.), from Ref. [147])
is also shown – the intensity has been rescaled to the maximum value of the GAP
VDOS for high-density a-C.

The substantial body of work on the vibrational and thermal
properties ofa-GeTehas beenmadepossible by the construction
of a dedicatedMLIP.Wecanonlyhope that this specific example
will foster the creation of new generations of MLIPs in the
future, thereby enabling the community to tackle ever more
complex disordered systems. To substantiate this point, we will
now turn to a different but likewise complex material for which
an MLIP has been introduced very recently.

4. From structural to vibrational to thermal
properties in amorphous carbon

The large structural diversity in allotropes and compounds of
carbon goes back to the element’s ability to formvery diverse co-
ordination environments: these are conventionally dubbed ‘sp’
(twofold bonded), ‘sp2’ (threefold bonded), and ‘sp3’ (fourfold
bonded). In amorphous carbon (a-C), the situation is evenmore
challenging, as these fragments readily exist side-by-side. The
dense form, so-called diamond-like (or tetrahedral) amorphous
carbon in fact contains a mixture of sp2 and sp3 environments,
as depicted in Figure 6(a); at low densities, linear –C≡C– chains
become influential. Indeed, sample density is a key determinant
for the structures (and thus properties) of amorphous forms of
carbon [141]. A recent review, including several computational
aspects, is found in Ref. [142].

This large structural diversitymakes it very challenging to ac-
curately describe a-C in atomistic simulations. While landmark
potentials, such as that by Tersoff [143] and Brenner [144], have
long been providing useful insight, they may have significant
issues such as with the abundance of sp3 configurations or
the description of failure processes. Many of these issues have
later been remedied, e.g. using an appropriate environment-
dependent cutoff [44], but challenges remain.

Recently, some of us have generated a GAP for liquid and
amorphous carbon. In this work, we also introduced an im-
proved set of local descriptors that combines the hitherto

employed SOAP with local, two- and three-body terms. This
was found to be very useful to stabilise the potential in regions
of high interatomic forces: in the liquid phase at 9,000 K, inter-
atomic forces in carbon regularly exceed 10 eV Å−1, whereas in
amorphous carbon at room temperature, they are on the order
of only a few eV Å−1.

The new a-C GAP [82] has been validated in several ways.
Figure 6(b)–(c) collect two of themost crucial quality indicators.
In the upper panel, we show the sp3 count as a function of
sample density. We have further validated the potential using it
for crystal-structure searching, in the spirit of Ref. [145], which
led to the identification of several hitherto unknown carbon
allotropes [146]. In particular, we fitted a version of the poten-
tial that had ‘seen’ no crystalline structures whatsoever – this
shows that the PES is trained sufficiently well from liquid and
amorphous snapshots to perform ab initio random structure
searching (AIRSS)-like procedures [145].

We here argue that ML-based potentials will likewise be
very useful tools for studying thermal properties of a-C. While
our work on this is still ongoing, we exemplify this here using
a computation of the VDOS and their localisation properties
for tetrahedral amorphous carbon (ta-C), which we validate
against reference DFT computations. The results are reported
in Figure 7, where we show the comparison between the VDOS
calculated by GAP and that obtained via DFT-LDA calculations
– for two 216-atommodels of amorphous carbon generated via
GAP at two different densities. The agreement between GAP
and DFT results is quite encouraging. Importantly, the GAP
manages to capture the substantial differences in the VDOS that
we observe at low and high density. It is instructive to compare
these results with the experimental VDOS of polycrystalline
diamond, also reported in Figure 7. The main feature of the
VDOS (at ≈ 1250 cm−1) is due to ideal sp3 tetrahedral carbon
atoms. It can be seen that the – much broader – VDOS of our
model of high-density (3.37 g/cm3) a-C also peaks at a similar
wavenumber. The – even broader – VDOS of our model of
low-density (2.11 g/cm3) a-C displays its mean peak at lower
frequencies (≈ 750 cm−1), while the feature corresponding to
sp3 carbon is weaker. This is consistent with the fact that low-
density a-C contains a much higher fraction of sp2 (and, if
rapidly quenched from the melt, even of close-to-linear sp)
atoms, which lead to vibrational modes characterised by lower
frequencies compared to that of sp3 carbon. Conversely, the vast
majority of atoms in high-density a-C are sp3 hybridized, and
lead to a VDOS quite similar to that of polycrystalline diamond.

A full characterisation of the vibrational properties of amor-
phous carbon at different densities, with special emphasis on
the structural features underlying the shape of the VDOS, will
be the subject of future work.

5. Conclusions

Our understanding of the thermal properties of amorphous
solids has a direct impact on countless practical applications,
from optical fibres to digital memories. In principle, molecular
simulations could provide valuable insight into themicroscopic
origin of functional properties, such as thermal conductivity
and thermal boundary resistance.However, the absence of long-
range order in amorphous solids requires simulation time and
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length scales far beyond the reach of ab initio methods. Con-
versely, more often than not, simple classical force fields are not
able to describe the structural complexity of these amorphous
materials.

Machine Learning-based Interatomic Potentials (MLIPs) of-
fer a way to overcome this standoff, as they allow to perform
simulations almost as fast as classical MD – while retaining
an accuracy typical of first-principles simulations. The field of
MLIPs is developing at a fantastic rate: we have briefly reviewed
Neural Network Potentials (NNPs) and Gaussian Approxima-
tion Potentials (GAPs), but a number of interesting alternatives
are emerging as well. Given the huge momentum presently
driving the field of machine learning as a whole, it is reasonable
to foresee a rapid expansion ofMLIPs formolecular simulations
in the very near future.

In this article, we reviewed the body of work that has been
devoted to the vibrational and thermal properties of GeTe, a
prototype phase-change material for non-volatile data storage.
A NNP for this system was built in 2012, and more recently ex-
panded from the crystalline, liquid and amorphous bulk to free
surfaces and low-dimensional nanostructures. This potential al-
lowed to quantify the thermal conductivity of amorphousGeTe,
and to pinpoint its microscopic origin. The thermal boundary
resistance across the interface between the amorphous and crys-
talline phases has also been calculated, and it isworthnoting that
the MLIPs for GeTe allowed for the cross-validation of several
results obtained by completely different simulation methods –
something exceedingly difficult to achieve by means of ab initio
simulations.

We also explored the capabilities of a GAP recently built to
study amorphous carbon, which is widely used in the form of
thin films for coatings. This system is especially interesting in
that it displays substantial structural differences according to
different densities. How does this affect the vibrational and thus
the thermal properties?To lay the groundwork for exploring this
question, we have here reviewed extensive validation against ab
initio simulations, and presented the results of a preliminary
investigation of the vibrational properties as a function of den-
sity. The latter suggests that the heat-conduction mechanism
in the two phases could be substantially different, and calls for
simulations on a much larger scale which are going to be the
subject of future work.

The NNP for GeTe and the GAP for amorphous carbon we
discussed here offer unique insight into the thermal properties
of these disordered solids. Broadly speaking, we believe that
MLIPs provide the opportunity to understand the microscopic
origin of functional properties such as thermal conductivity and
thermal boundary resistance. This knowledge can aid the design
of novel amorphous systems with unique thermal properties,
and contribute to bridge the gap between continuous models
for thermal transport and molecular simulations. We feel there
is enormous potential for the field – even more so as GAP and
other frameworks are now publicly available, thus providing the
community with the tools of the trade.

The most pressing challenge for MLIPs in the context of
thermal properties is perhaps that of addressing the interfaces
between different materials, as well as industrially relevant ma-
terials such as ceramic matrix composites. The huge configura-
tional space, together with the intrinsic complexity of surfaces

and interfaces call for further improvements to the existing
MLIP implementations. In this respect, we hope that this work
will encourage the community to take advantage of the capa-
bilities of MLIPs so as to establish molecular simulations as the
method of choice to complement and guide the experimental
characterisation of the thermal properties of amorphous solids.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

G.C.S. is grateful to the Centre for Scientific Computing at the University
of Warwick for providing computational resources. V.L.D. gratefully ac-
knowledges a Feodor Lynen fellowship from the Alexander von Humboldt
Foundation, a Leverhulme Early Career Fellowship, and support from the
Isaac Newton Trust.

ORCID

Gabriele C. Sosso http://orcid.org/0000-0002-6156-7399
Volker L. Deringer http://orcid.org/0000-0001-6873-0278
Gábor Csányi http://orcid.org/0000-0002-8180-2034

References

[1] Balandin AA. Thermal properties of graphene and nanostructured
carbon materials. Nat Mater. 2011 Jul;10:569–581.

[2] Gotsmann B, Lantz MA. Quantized thermal transport across
contacts of rough surfaces. Nat Mater. 2012 Oct;12:3460.

[3] Beekman M, Morelli DT, Nolas GS. Better thermoelectrics through
glass-like crystals. Nat Mater. 2015 Nov;14:1182–1185.

[4] Russ B, Glaudell A, Urban JJ, et al. Organic thermoelectric materials
for energy harvesting and temperature control. Nat Rev Mater. 2016
Aug;1:201650.

[5] Kwon S, Zheng J,WingertMC, et al. Unusually high and anisotropic
thermal conductivity in amorphous silicon nanostructures. ACS
Nano. 2017 Mar;11:2470–2476.

[6] Shanker A, Li C, Kim G-H, et al. High thermal conductivity in
electrostatically engineered amorphous polymers. Sci Adv. 2017
Jul;3:e1700342.

[7] Wingert MC, Zheng J, Kwon S, et al. Thermal transport
in amorphous materials: a review. Semicond Sci Technol.
2016;31(11):113003.

[8] Cahill DG, Braun PV, Chen G, et al. Nanoscale thermal transport II.
Appl Phys Rev. 2014 Jan;1:011305.

[9] Tritt TT. Thermal conductivity: theory, properties, and applications
New York (NY). Springer. 2004. DOI:10.1007/b136496

[10] DoveMT. Introduction to the theory of lattice dynamics. J Neutron.
2011;12:123–159.

[11] Ibach H, Lüth H. Solid-state physics, Berlin: Springer. Berlin
Heidelberg. 2009. DOI:10.1007/978-3-540-93804-0

[12] SopuD, Kotakoski J, Albe K. Finite-size effects in the phonon density
of states of nanostructured germanium: a comparative study of
nanoparticles, nanocrystals, nanoglasses, and bulk phases. Phys Rev
B. 2011 Jun;83:245416.

[13] Donadio D, Galli G. Temperature dependence of the thermal
conductivity of thin silicon nanowires. Nano Lett. 2010Mar;10:847–
851.

[14] Allen PB, Feldman JL, Fabian J, et al. Diffusons, locons and
propagons: character of atomic vibrations in amorphous Si. Philos
Mag B. 1999 Nov;79:1715–1731.

[15] Taraskin SN, Elliott SR. Ioffe-regel crossover for plane-wave
vibrational excitations in vitreous silica. Phys Rev B. 2000
May;61:12031–12037.

http://orcid.org
http://orcid.org/0000-0002-6156-7399
http://orcid.org
http://orcid.org/0000-0001-6873-0278
http://orcid.org
http://orcid.org/0000-0002-8180-2034
https://doi.org/10.1007/b136496
https://doi.org/10.1007/978-3-540-93804-0


MOLECULAR SIMULATION 13

[16] Wooten F, Winer K, Weaire D. Computer generation of structural
models of amorphous Si and Ge. Phys Rev Lett. 1985;54:1392–
1395.

[17] Würger A, Bodea D. Thermal conductivity by two-level systems in
glasses. Chem Phys. 2004 Jan;296:301–306.

[18] Pérez-Castañeda T, Rodríguez-Tinoco C, Rodríguez-Viejo J, et al.
Suppression of tunneling two-level systems in ultrastable glasses of
indomethacin. PNAS. 2014 Aug;111:11275–11280.

[19] Cliffe MJ, Bartók AP, Kerber RN, et al. Structural simplicity as a
restraint on the structure of amorphous silicon. Phys Rev B. 2017
Jun;95:224108.

[20] Mi-tang W, Jin-shu C. Viscosity and thermal expansion of rare
earth containing soda-lime-silicate glass. J Alloys Compd. 2010
Aug;504:273–276.

[21] Baesso ML, Shen J, Snook RD. Time-resolved thermal lens
measurement of thermal diffusivity of soda-lime glass. Chem Phys
Lett. 1992 Sep;197:255–258.

[22] Oguma M, Fairbanks CJ, Hasselman DPH. Thermal stress fracture
of brittle ceramics by conductive heat transfer in a liquid metal
quenching medium. J Am Ceram Soc. 1986 Apr;69:C–87.

[23] Kang J, Han B. First-principles study on the thermal stability of
LiNiO2 materials coated by amorphous Al2O3 with atomic layer
thickness. ACS Appl Mater Interfaces. 2015 Jun;7:11599–11603.

[24] Nitta N, Wu F, Lee JT, et al. Li-ion battery materials: present and
future. Mater Today. 2015 Jun;18:252–264.

[25] Terny S, Frechero M. Study of phosphate polyanion electrodes and
their performance with glassy electrolytes: potential application in
lithium ion solid-state batteries. In: Tiwari A, Kuralay F, Uzun L.
editors. Advanced electrode materials. Beverly (MA): John Wiley &
Sons; 2016. p. 255–258.

[26] Pershina SV, Raskovalov AA, Antonov BD, et al. The transport
and thermal properties of glassy LiPO3/crystalline Al2O3 (ZrO2)
composite electrolytes. Ionics. 2018 Jan;24:133–138.

[27] RodriguesM-TF, Babu G, Gullapalli H, et al. Amaterials perspective
on Li-ion batteries at extreme temperatures. Nat Energy. 2017
Jul;2:17108.

[28] Raoux S, Welnic W, Ielmini D. Phase change materials and their
application to nonvolatile memories. Chem Rev. 2010 Jan;110:240–
267.

[29] Kolobov AV, Tominaga J, editors. Chalcogenides: metastability and
phase change phenomena. Berlin: Springer; 2012.

[30] Wuttig M, Yamada N. Phase-change materials for rewriteable data
storage. Nat Mater. 2007 Nov;6:824–832.

[31] Raoux S, Wuttig M. Phase change materials: science and
applications. New York (NY): Springer; 2010.

[32] Siegert KS, Lange FRL, Sittner ER, et al. Impact of vacancy ordering
on thermal transport in crystalline phase-changematerials. Rep Prog
Phys. 2015;78(1):013001.

[33] Baroni S, de Gironcoli S, Dal Corso A, et al. Phonons and related
crystal properties from density-functional perturbation theory. Rev
Mod Phys. 2001 Jul;73:515–562.

[34] Tuckerman ME, Martyna GJ. Understanding modern molecular
dynamics: techniques and applications. J Phys Chem B. 2000
Jan;104:159–178.

[35] Barnett RN, Cleveland CL, LandmanU. Structure and dynamics of a
metallic glass: molecular-dynamics simulations. Phys Rev Lett. 1985
Nov;55:2035–2038.

[36] Ercolessi F, Tosatti E, ParrinelloM. Au (100) surface reconstruction.
Phys Rev Lett. 1986 Aug;57:719–722.

[37] Ackland GJ, Thetford R. An improved N-body semi-empirical
model for body-centred cubic transition metals. Philos Mag A. 1987
Jul;56:15–30.

[38] Sutton AP, Chen J. Long-range Finnis-Sinclair potentials. Philos
Mag Lett. 1990 Mar;61:139–146.

[39] Daw MS, Foiles SM, Baskes MI. The embedded-atom method: a
review of theory and applications. Mater Sci Rep. 1993 Mar;9:251–
310.

[40] GulenkoA, Chungong LF,Gao J, et al. Atomic structure ofMg-based
metallic glasses from molecular dynamics and neutron diffraction.
Phys Chem Chem Phys. 2017 Mar;19:8504–8515.

[41] Tangney P, Scandolo S. An ab initio parametrized interatomic force
field for silica. J Chem Phys. 2002 Oct;117:8898–8904.

[42] Soules TF, Gilmer GH, Matthews MJ, et al. Silica molecular
dynamic force fields-a practical assessment. J Non-Cryst Solids. 2011
Mar;357:1564–1573.

[43] CowenBJ, ElMS.On force fields formolecular dynamics simulations
of crystalline silica. Comput Mater Sci. 2015 Sep;107:88–101.

[44] Pastewka L, Pou P, Pérez R, et al. Describing bond-breaking
processes by reactive potentials: importance of an environment-
dependent interaction range. Phys Rev B. 2008 Oct;78:161402.

[45] Mjolsness E, DeCoste D. Machine learning for science: state of the
art and future prospects. Science. 2001 Sep;293:2051–2055.

[46] JordanMI,Mitchell TM.Machine learning: trends, perspectives, and
prospects. Science. 2015 Jul;349:255–260.

[47] Biamonte J, Wittek P, Pancotti N, et al. Quantummachine learning.
Nature. 2017 Sep;549:195–202.

[48] Savage N. Machine learning: calculating disease. Nature. 2017
Oct;550:S115–S117.

[49] Behler J. Perspective: machine learning potentials for atomistic
simulations. J Chem Phys. 2016 Nov;145:170901.

[50] van Roekeghem A, Carrete J, Oses C, et al. High-throughput
computation of thermal conductivity of high-temperature solid
phases: the case of oxide and fluoride perovskites. Phys Rev X. 2016
Dec;6:041061.

[51] Gaultoi MW, Oliynyk AO, Mar A, et al. Perspective: web-based
machine learning models for real-time screening of thermoelectric
materials properties. APL Mater. 2016 May;4:053213.

[52] Thompson AP, Swiler LP, Trott CR, et al. Spectral neighbor analysis
method for automated generation of quantum-accurate interatomic
potentials. J Comput Phys. 2015 Mar;285:316–330.

[53] Balabin RM, Lomakina EI. Support vector machine regression (LS-
SVM)-an alternative to artificial neural networks (ANNs) for the
analysis of quantum chemistry data? Phys Chem Chem Phys. 2011
Jun;13:11710–11718.

[54] Bartók AP, Csányi G. Gaussian approximation potentials: a brief
tutorial introduction. Int J Quantum Chem. 2015 Aug;115:1051–
1057.

[55] Blank TB, Brown SD, Calhoun AW, et al. Neural network models of
potential energy surfaces. J. Chem. Phys. 1995 Sep;103:4129–4137.

[56] Handley CM, Behler J. Next generation interatomic potentials for
condensed systems. Eur Phys J B. 2014 Jul;87:152.

[57] Rupp M, Tkatchenko A, Müller K-R, et al. Fast and accurate
modeling of molecular atomization energies with machine learning.
Phys Rev Lett. 2012 Jan;108:058301.

[58] Manzhos S, Carrington T. A random-sampling high dimensional
model representation neural network for building potential energy
surfaces. J Chem Phys. 2006 Aug;125:084109.

[59] Hobday S, Smith R, Belbruno J. Applications of neural networks to
fitting interatomic potential functions. Model Simul Mater Sci Eng.
1999;7(3):397.

[60] Behler J. Neural network potential-energy surfaces in chemistry:
a tool for large-scale simulations. Phys Chem Chem Phys. 2011
Oct;13:17930–17955.

[61] Handley CM, Popelier PLA. Potential energy surfaces fitted by
artificial neural networks. J Phys ChemA. 2010Mar;114:3371–3383.

[62] RuppM.Machine learning for quantummechanics in a nutshell. Int
J Quantum Chem. 2015 Aug;115:1058–1073.

[63] MacLeod N, Benfield M, Culverhouse P. Time to automate
identification. Nature. 2010 Sep;467:154–155.

[64] SchrammS.Computer science: data analysismeets quantumphysics.
Nature. 2017 Oct;550:550339a.

[65] Thompson LR. A communal catalogue reveals Earth’s multiscale
microbial diversity. Nature. 2017 Nov:24621

[66] Castelvecchi D. Artificial intelligence called in to tackle LHC data
deluge. Nat News. 2015 Dec;528:18.

[67] Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of
Go without human knowledge. Nature. 2017 Oct;550:24270.

[68] Li Z, Kermode JR, De Vita A. Molecular dynamics with on-the-
fly machine learning of quantum-mechanical forces. Phys Rev Lett.
2015 Mar;114:096405.



14 G. C. SOSSO ET AL.

[69] Huan TD, Batra R, Chapman J, et al. A universal strategy for
the creation of machine learning-based atomistic force fields. npj
Comput Mater. 2017 Sep;3: Article No. 37.

[70] Podryabinkin EV, Shapeev AV. Active learning of linearly
parametrized interatomic potentials. Comput Mater Sci. 2017
Dec;140:171–180.

[71] Behler J. Atom-centered symmetry functions for constructing
high-dimensional neural network potentials. J Chem Phys. 2011
Feb;134:074106.

[72] Ooi N, Rairkar A, Adams JB. Density functional study of graphite
bulk and surface properties. Carbon. 2006 Feb;44:231–242.

[73] Kganyago KR, Ngoepe PE. Effects of local and gradient-corrected
density approximations on the prediction of the intralayer lattice
distance c, in graphite and LiC6. Mol Sim. 1999 Feb;22:39–49.

[74] Artrith N,Morawietz T, Behler J. High-dimensional neural-network
potentials for multicomponent systems: applications to zinc oxide.
Phys Rev B. 2011 Apr;83:153101.

[75] Bartók AP, Kondor R, Csányi G. On representing chemical
environments. Phys Rev B. 2013 May;87:184115.

[76] Mahoney MW, Drineas P. CUR matrix decompositions for
improved data analysis. PNAS. 2009 Jan;106:697–702.

[77] Behler J, Parrinello M. Generalized neural-network representation
of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007
Apr;98:146401.

[78] Artrith N, Behler J. High-dimensional neural network potentials
for metal surfaces: a prototype study for copper. Phys Rev B. 2012
Jan;85:045439.

[79] Morawietz T, Singraber A, Dellago C, et al. How van der Waals
interactions determine the unique properties of water. PNAS. 2016
Jul;113:8368–8373.

[80] Bartók AP, Payne MC, Kondor R, et al. Gaussian approximation
potentials: the accuracy of quantum mechanics, without the
electrons. Phys Rev Lett. 2010 Apr;104:136403.

[81] Szlachta WJ, Bartók AP, Csányi G. Accuracy and transferability of
Gaussian approximation potential models for tungsten. Phys Rev B.
2014 Sep;90:104108.

[82] Deringer VL, Csányi G. Machine learning based interatomic
potential for amorphous carbon. Phys Rev B. 2017 Mar;95:094203.

[83] Plimpton S. Fast parallel algorithms for short-range molecular
dynamics. J Comput Phys. 1995 Mar;117:1–19.

[84] Bartók AP, Gillan MJ, Manby FR, et al. Machine-learning approach
for one- and two-body corrections to density functional theory:
applications to molecular and condensed water. Phys Rev B. 2013
Aug;88:054104.

[85] Smith JS, IsayevO,RoitbergAE.ANI-1: an extensible neural network
potential with DFT accuracy at force field computational cost. Chem
Sci. 2017 Feb;8:3192–3203.

[86] Gabardi S, Baldi E, Bosoni E, et al. Atomistic simulations of the
crystallization and aging of GeTe nanowires. J Phys Chem C. 2017
Oct;121:23827–23838.

[87] Wang CS, Klein BM, Krakauer H. Theory of magnetic and structural
ordering in iron. Phys Rev Lett. 1985 Apr;54:1852–1855.

[88] Grimme S. Seemingly simple stereoelectronic effects in alkane
isomers and the implications for Kohn-Sham density functional
theory. Angew Chem Int Ed. 2006 Jul;45:4460–4464.

[89] George J, ReimannC, Deringer VL, et al. On theDFT ground state of
crystalline bromine and iodine. ChemPhysChem. 2015Mar;16:728–
732.

[90] Oró E, deGraciaA, Castell A, et al. Review on phase changematerials
(PCMs) for cold thermal energy storage applications. Appl Energy.
2012 Nov;99:513–533.

[91] Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat
transfer and phase change problem formulation for latent heat
thermal energy storage systems (LHTESS). Renewable Sustainable
Energy Rev. 2010 Feb;14:615–628.

[92] Lencer D, Salinga M, Grabowski B, et al. A map for phase-change
materials. Nat Mater. 2008 Nov;7:2330.

[93] WuttigM, SalingaM. Phase-changematerials: fast transformers. Nat
Mater. 2012 Mar;11:3288.

[94] Deringer VL, Dronskowski R, Wuttig M. Microscopic complexity
in phase-change materials and its role for applications. Adv Funct
Mater. 2015 Oct;25:6343.

[95] Akola J, Jones RO. Amorphous structures of Ge/Sb/Te alloys:
density functional simulations. Phys Stat Solid B. 2012 Oct;249:
1851.

[96] Zhang W, Deringer VL, Dronskowski R, et al. Density-functional
theory guided advances in phase-change materials and memories.
MRS Bull. 2015 Oct;40:856.

[97] Risk WP, Rettner CT, Raoux S. Thermal conductivities and phase
transition temperatures of various phase-changematerialsmeasured
by the 3ω method. Appl Phys Lett. 2009 Mar;94:101906.

[98] Matsunaga T, Yamada N, Kojima R, et al. Phase-change materials:
vibrational softening upon crystallization and its impact on thermal
properties. Adv Funct Mater. 2011 Jun;21:2232–2239.

[99] Lan R, Endo R, Kuwahara M, et al. Electrical and heat conduction
mechanisms of GeTe alloy for phase change memory application. J
Appl Phys. 2012 Sep;112:053712.

[100] Campi D, Paulatto L, Fugallo G, et al. First-principles calculation
of lattice thermal conductivity in crystalline phase change materials:
GeTe, Sb2Te3, and Ge2Sb2Te5. Phys Rev B. 2017 Jan;95:024311.

[101] He Y, Donadio D, Galli G. Heat transport in amorphous silicon:
interplay between morphology and disorder. Appl Phys Lett. 2011
Apr;98:144101.

[102] He Y, Donadio D, Lee J-H, et al. Thermal transport in nanoporous
silicon: interplay between disorder at mesoscopic and atomic scales.
ACS Nano. 2011 Mar;5:1839–1844.

[103] Caravati S, Bernasconi M, Kühne TD, et al. Coexistence of
tetrahedral- and octahedral-like sites in amorphous phase change
materials. Appl Phys Lett. 2007 Oct;91:171906.

[104] Mazzarello R, Caravati S, Angioletti-Uberti S, et al. Signature of
tetrahedral Ge in the Raman spectrum of amorphous phase-change
materials. Phys Rev Lett. 2010 Feb;104:085503.

[105] Deringer VL, Zhang W, Lumeij M, et al. Bonding nature of local
structural fragments in amorphous GeTe. AngewChem Int Ed. 2014
Sep;53:10817–10820.

[106] Sosso GC, Colombo J, Behler J, et al. Dynamical heterogeneity in the
supercooled liquid state of the phase change material GeTe. J Phys
Chem B. 2014 Nov;118:13621–13628.

[107] Akola J, Larrucea J, Jones RO. Polymorphism in phase-change
materials: melt-quenched and as-deposited amorphous structures in
Ge2Sb2Te5 from density functional calculations. Phys Rev B. 2011
Mar;83:094113.

[108] Upadhyay M, Abhaya S, Murugavel S, et al. Experimental evidence
for presence of voids in phase change memory material. RSC Adv.
2013 Dec;4:3691–3700.

[109] Sosso GC, Caravati S, Mazzarello R, et al. Raman spectra of cubic
and amorphous Ge2Sb2Te5 from first principles. Phys Rev B. 2011
Apr;83:134201.

[110] Fallica R, Varesi E, Fumagalli L, et al. Effect of nitrogen doping on
the thermal conductivity of GeTe thin films. Phys Stat Solid RRL.
2013 Dec;7:1107–1111.

[111] Bosse JL, Timofeeva M, Tovee PD, et al. Nanothermal charac-
terization of amorphous and crystalline phases in chalcogenide
thin films with scanning thermal microscopy. J Appl Phys. 2014
Oct;116:134904.

[112] Park S, Park D, Jeong K, et al. Effect of the thermal conductivity on
resistive switching in GeTe and Ge2Sb2Te5 nanowires. ACS Appl
Mater Interfaces. 2015 Oct;7:21819–21827.

[113] Kusiak A, Battaglia J-L, Noé P, et al. Thermal conductivity of
carbon doped GeTe thin films in amorphous and crystalline state
measured by modulated photo thermal radiometry. J Phys Conf Ser.
2016;745(3):032104.

[114] Bosoni E, Sosso GC, Bernasconi M. Grüneisen parameters and
thermal conductivity in the phase change compound GeTe. J
Comput Electron. 2017 Aug;16:1–6.

[115] Sosso GC, Miceli G, Caravati S, et al. Neural network interatomic
potential for the phase change material GeTe. Phys Rev B. 2012
May;85:174103.



MOLECULAR SIMULATION 15

[116] Sosso GC, Miceli G, Caravati S, et al. Fast crystallization of the
phase change compound GeTe by large-scale molecular dynamics
simulations. J Phys Chem Lett. 2013 Dec;4:4241–4246.

[117] SossoGC, Behler J, BernasconiM.Atomicmobility in the overheated
amorphous GeTe compound for phase change memories. Phys Stat
Solid A. 2015 Oct;92:054201.

[118] Sosso GC, Donadio D, Caravati S, et al. Thermal transport in phase-
change materials from atomistic simulations. Phys Rev B. 2012
Sep;86:104301.

[119] Fallica R, Battaglia J-L, Cocco S, et al. Thermal and electrical
characterization ofmaterials for phase-changememory cells. J Chem
Eng Data. 2009 Jun;54:1698–1701.

[120] Zhang S-N, He J, Zhu T-J, et al. Thermal conductivity and
specific heat of bulk amorphous chalcogenides Ge20Te80−xSex (x =
0, 1, 2, 8). J Non-Cryst Solids. 2009 Jan;355:79–83.

[121] Gabardi S, Caravati S, Sosso GC, et al. Microscopic origin of
resistance drift in the amorphous state of the phase-change
compound GeTe. Phys Rev B. 2015 Aug;92:054201.

[122] McQuarrie D. Statistical mechanics. Sausalito (CA): University
Science Books; 2000.

[123] Schelling PK, Phillpot SR, Keblinski P. Comparison of atomic-level
simulation methods for computing thermal conductivity. Phys Rev
B. 2002 Apr;65:144306.

[124] Helfand E. Transport coefficients from dissipation in a canonical
ensemble. Phys Rev. 1960 Jul;119:1–9.

[125] Lussetti E, Terao T, Müller-Plathe F. Nonequilibrium molecular
dynamics calculation of the thermal conductivity of amorphous
polyamide-6,6. J Phys Chem B. 2007 Oct;111:11516–11523.

[126] Sääskilahti K, Oksanen J, Tulkki J, et al. Vibrational mean
free paths and thermal conductivity of amorphous silicon from
non-equilibrium molecular dynamics simulations. AIP Adv. 2016
Dec;6:121904.

[127] Dongre B, Wang T, Madsen GKH. Comparison of the Green-Kubo
and homogeneous non-equilibrium molecular dynamics methods
for calculating thermal conductivity. Model Simul Mater Sci Eng.
2017 May;25(5):054001.

[128] Müller-Plathe F. A simple nonequilibrium molecular dynamics
method for calculating the thermal conductivity. J Chem Phys. 1997
Apr;106:6082–6085.

[129] Bird R, Stewart W, Lightfoot E. Transport phenomena. New York
(NY): Wiley international edition, Wiley; 2007.

[130] Campi D, Donadio D, Sosso GC, et al. Electron-phonon interaction
and thermal boundary resistance at the crystal-amorphous interface
of the phase change compound GeTe. J Appl Phys. 2015
Jan;117:015304.

[131] McGaughey AJH, Kaviany M. Quantitative validation of the
Boltzmann transport equation phonon thermal conductivity model
under the single-mode relaxation time approximation. Phys Rev B.
2004 Mar;69:094303.

[132] Pang JWL, Buyers WJL, Chernatynskiy A, et al. Phonon lifetime
investigation of anharmonicity and thermal conductivity of UO2 by
neutron scattering and theory. Phys Rev Lett. 2013 Apr;110:157401.

[133] Togo A, Chaput L, Tanaka I. Distributions of phonon lifetimes in
Brillouin zones. Phys Rev B. 2015 Mar;91:094306.

[134] Wang Y, Shang S-L, Fang H, et al. "First-principles calculations of
lattice dynamics and thermal properties of polar solids," npjComput.
Mater. 2016 May;2:20166.

[135] Allen PB, Feldman JL. Thermal conductivity of disordered harmonic
solids. Phys Rev B. 1993 Nov;48:12581–12588.

[136] UdaT. Atomic structure of amorphous silicon. Solid State Commun.
1987 Nov;64:837–841.

[137] Treacy MMJ, Borisenko KB. The local structure of amorphous
silicon. Science. 2012 Feb;335:950–953.

[138] Pedersen A, Pizzagalli L, Jónsson H. Optimal atomic structure
of amorphous silicon obtained from density functional theory
calculations. New J Phys. 2017 Jun;19(6):063018.

[139] Boschker JE, Wang R, Calarco R. GeTe: a simple compound blessed
with a plethora of properties. CrystEngComm. 2017;19(36):5324–
5335.

[140] Majumdar A, Reddy P. Role of electron-phonon coupling in thermal
conductance of metal-nonmetal interfaces. Appl Phys Lett. 2004
May;84:4768–4770.

[141] Robertson J. Diamond-like amorphous carbon.Mater Sci EngRRep.
2002 May;37:129–281.

[142] Laurila T, Sainio S, Caro MA. Hybrid carbon based nanomaterials
for electrochemical detection of biomolecules. Prog Mater Sci. 2017
Jul;88:499–594.

[143] Tersoff J. Empirical interatomic potential for carbon, with
applications to amorphous carbon. Phys Rev Lett. 1988
Dec;261:2879–2882.

[144] Brenner DW. Empirical potential for hydrocarbons for use in
simulating the chemical vapor deposition of diamond films. Phys
Rev B. 1990 Nov;42:9458–9471.

[145] Pickard CJ, Needs RJ. Ab initio random structure searching. J Phys
Condens Matter. 2011 Jan;23:053201.

[146] Deringer VL, Csányi G, Proserpio DM. Extracting crystal
chemistry from amorphous carbon structures. ChemPhysChem.
2017 Apr;18:873–877.

[147] Bosak A, Krisch M. Phonon density of states probed by inelastic
x-ray scattering. Phys Rev B. 2005 Dec;72:224305.


	1. Introduction
	2. Machine learning for atomistic simulations: why and how
	2.1. Implementations: neural-network potentials and gaussian approximation potentials
	2.2. What are the limits?

	3. Thermal properties of phase-change materials
	3.1. The thermal conductivity of amorphous GeTe: three options
	3.1.1. Green–Kubo relation
	3.1.2. Non-equilibrium molecular dynamics
	3.1.3. Allen–Feldman theory and the Boltzmann transport equation

	3.2. Thermal boundary resistance at the crystal–amorphous interface

	4. From structural to vibrational to thermal properties in amorphous carbon
	5. Conclusions
	Disclosure statement
	Funding
	ORCID
	References



