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Why should I care?
• Spectroscopy - e.g. UV/Vis spectroscopy

Polymethine dye (cation, one resonant structure only).

B Would the particle in a box model be a reasonable approximation in order to describe the electronic
structure of this molecule? Why?

C How many electrons are involved in the conjugate system? Note that the lone pair on the nitrogen
atom must be included in the count.

D Sketch a diagram of the molecular electronic states of this molecule considering the Nc conjugated
electrons only.

E The Highest Occupied Molecular Orbital (HOMO) contains pNc{2q electrons, so that we can
assign to it a ”quantum number” nHOMO “ pNc{2q. What would be the expression for nLUMO

(where LUMO stands for the Lowest Unoccupied Molecular Orbital)?

F Within the particle in the box model, an electronic transition from the i energy level to the j

energy level can be written as:

�Ei´j “ h

2

8meL
2

¨ pn2
j ´ n

2
i q, (5)

where me, L and nj are the electron mass, the length of the box and the quantum number
associated by the energy level j respectively. Write down the expression for �EHOMO-LUMO.

G What is the length L of the ”box”? Note that the average length of a C-C double bond is 1.39
Å, and that in order to include the lone pairs of the nitrogen atoms and additional bond length
has to be added - for each N at the end of the conjugated chain. Assume that the average length
of a N-C double bond is also 1.39 Å.

H The electronic transition from the Highest Occupied Molecular Orbital (HOMO) to the Lowest
Unoccupied Molecular Orbital (LUMO) is characterised by a wavelength:

�HOMO-LUMO “ hc

�EHOMO-LUMO
. (6)

What is the colour of this dye in solution? The visible region of the electromagnetic spectrum is
depicted in the figure below.

The visible region of the electromagnetic spectrum.
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G From one nitrogen atom to the other one (basically from the start to the end of the conjugated
chain) we have 6 C-C (or C-N) double bonds. Adding two C-N double bonds (one for each
N at the ends of the conjugated chain) leads to 8 bonds. As each one of those has an average
length of 1.39 Å, the length of the box (i.e. the dimension of the conjugated system) is
1.39x8 “ 11.12 Å.

H

�HOMO-LUMO “ hc

�EHOMO-LUMO

“ hc

h

2 ¨ pNc ` 1q8meL
2 “ c8meL

2

h ¨ pNc ` 1q

“ 2.998 ¨ 108 m ¨ s ¨ 8 ¨ 9.1 ¨ 10´31 Kg ¨ p11.12Åq2
6.6 ¨ 10´34 J ¨ s ¨ 9

“ 454 ¨ 109 m “ 454 nm, which correspond to a beautiful blue

Note that the experimental value of �HOMO-LUMO for this very molecule is 445 nm [(see e.g. J.
Chem. Phys. 17, 1198 (1949)]. Not too bad an achievement for the humble particle in a box
model!
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Why should I care?
• Charge transfer in biological systems

Biological electron-transfer (ET) reactions are typically described in the framework of coherent 
two-state electron tunneling or multistep hopping. However, these ET reactions may involve 

multiple redox cofactors in van der Waals contact with each other and with vibronic 
broadenings on the same scale as the energy gaps among the species.

Zhang, Y., Liu, C., Balaeff, A., Skourtis, S.S., and Beratan, D.N. (2014). 
Biological charge transfer via flickering resonance. PNAS 111, 10049–10054.

Sjulstok, E., Olsen, J.M.H., and Solov’yov, I.A. (2015).  
Quantifying electron transfer reactions in biological systems: what interactions play the major role? Scientific Reports 5, srep18446.

www.nature.com/scientificreports/

2Scientific RepoRts | 5:18446 | DOI: 10.1038/srep18446

Cryptochromes are flavoproteins, involved in light-dependent signaling pathways of several vital biological 
processes, such as the regulation of the hypocotyl growth in plants and entrainment of circadian rhythm in ani-
mals30. Cryptochromes were also proposed to act as sensors for the geomagnetic field and assists many animals 
in long-range navigation5,10,11,13,14,16,28,31.

The biological activation of cryptochrome arises from light-induced formation of a radical pair through  
electron transfer between a flavin cofactor (FAD) and a triad of tryptophan residues30, which constitute  
the active site of the protein. Figure 2A illustrates the process, by showing the three consecutive electron  
transfers between flavin and the tryptophans of the triad, WA, WB and WC, which in the case of AtCry have the 
amino acid indices 400, 377 and 324, respectively. The three electron transfers are labeled ET1, ET2 and ET3, and 

Figure 1. Examples of biological systems where electron transfer play a key role. (A) electron transfer 
initiating DNA UV-lesion repair by enzyme photolyase. (B) electron transfer triggering a cascade of charge 
transfer reactions in the cytochrome bc1 complex that lead to a formation of an electrostatic gradient through 
the plasma membrane. (C) Activation of cryptochrome protein initiated by blue light excitation of the FAD 
cofactor leading to a formation of a radical pair.

Figure 2. The tryptophan triad and the flavin cofactor constitute the active site of AtCry. The protein is 
activated once the flavin moiety has gained a radical character which is governed through three electron transfer 
steps, ET1, ET2 and ET3, between flavin and the tryptophan triad. The electron transfer ET1 is initiated by 
light excitation (A). Here we study these electron transfers for two different structural models of cryptochrome 
active site: (A) The ‘vacuum model’, where only the active site is considered and all the protein interactions are 
neglected. The dangling bonds are terminated with the hydrogen atoms as shown. (B) The ‘environment model’, 
where the complete protein structure and surrounding water shell are taken into account.



Why should I care?
• Computational chemistry

H| i = E| i

• Post-Hartree-Fock methods (CI, CC, MP2…) 
• Density Functional Theory 
• […]

hb_1.mp4
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Workshop (pass/fail)



Course resources

Books:
• Reading list on Moodle 
• Remember: nothing is essential, everything is useful

Moodle:
• Lecture notes [plus Lecture Capture]

Myself:
• Via email: G.Sosso@warwick.ac.uk [anytime] 
• In person: G Block, Office 4. Office hours for CH932: Thursday, 2-3 PM. 

[A 24h notice via email would be highly appreciated]

mailto:G.Sosso@warwick.ac.uk


Intro

Assumptions 
At this stage you should be familiar with … 

• Nothing - we shall start from scratch!

Learning Objectives 
By the end of this lectures you should…  

• … be familiar with the basic concepts of quantum mechanics 
• … be able to deal with a few model systems (free particle, particle in a 

box, hydrogen atom…) 
• … be confident about the notion of chemical bonds and intermolecular 

interactions



The need for quantum mechanics

• Early birds: Ludwig Boltzmann (1877) [discrete energy levels] 
• Old quantum theory:  

- Max Planck (1900) [black-body radiation] 
- Albert Einstein (1905) [photoelectric effect] 
- Niels Bohr (~1910 )[hydrogen line spectrum] 
- […] 

• Unified & Formalised (~1930) 
- David Hilbert 
- Paul Dirac  
- […]

Photoelectric effect 
• Energy quantisation 
• Wave-particle duality



Photoelectric effect

Light 
Electromagnetic radiation

Metal 
Free electron model



Photoelectric effect

Classical electromagnetic theory 
Energy transfer from the light to the electron

The more intense the light, the strongest the force applied to the electron 
(eventually, for a sufficiently intense light, the electron will leave the metal)

For each metal, there exist a characteristic cutoff frequency below which no electrons are emitted,  
no matter how intense the light



Photoelectric effect

Einstein interpretation 
Light is quantised into “bundles of energy” (particles!) called photons, each with energy

E = h⌫

Increasing the intensity of the light increase the number of photons, 
but not their frequency, hence their individual energy is the same

What we need instead is photons with:

⌫ >
w0

h



Wave-particle duality

Classical physics

Radiation 
(Waves)

Matter 
(Particles)

Quantum physics

� =
h

p

de Broglie relation: 
the wavelength 𝜆 of the wave associated with the motion of the particle having a momentum p



Atomic spectra

The electronic structure of atoms is quantised

The spectra emitted by macroscopic objects  
upon the interaction with electromagnetic radiation are continuous 

The spectra emitted by free atoms 
display a number of discrete wavelengths 

m  
^ 

`d1
:11

03
dS

 0I1
/4O

1
d

 171
7 '

Oa
S 

g  
co  

A (R)  °  co  co  

Ln  N  T.  

^
C7

^^

 ̂ 
CO  

cr  ;  CO CO  

m  
Lri  

C^7 

by free atoms is concentrated at a number of discrete wavelengths. Each of these wave-
length components is called a line because of the line (image of the slit) which it pro-
duces on the photographic plate. Investigation of the spectra emitted from different 
kinds of atoms shows that each kind of atoms has its own characteristic spectrum, 
i.e., a characteristic set of wavelengths at which the lines of the spectrum are found. 
This feature is of greatest practical importance because it makes spectroscopy a very 
useful addition to the usual techniques of chemical analysis. Chiefly for this reason  

much effort was devoted to the accurate measurement of atomic spectra, and, in fact, 
much effort was needed because the spectra consist of many hundreds of lines and 
in general are very complicated. 

However, the spectrum of hydrogen is relatively simple. This is perhaps not sur-
prising since hydrogen, which contains just one electron, is itself the simplest atom. 
Most of the universe consists of isolated hydrogen atoms so that the hydrogen spec-
trum is of considerable practical interest. There are historical and theoretical reasons 
as well for studying it, as will become apparent later. Figure 4-10 shows that part of 
the atomic hydrogen spectrum which falls approximately within the wavlength range 
of visible light. We see that the spacing, in wavelengths, between adjacent lines of the 
spectrum continuously decreases with decreasing wavelength of the lines, so that the 
series of lines converges to the so-called series limit at 3645.6 A. The short wavelength 
lines, including the series limit, are hard to observe experimentally because of their 
close spacing and because they are in the ultraviolet. 

The obvious regularity of the H spectrum tempted several people to look for an 
empirical formula which would represent the wavelength of the lines. Such a formula 
was discovered in 1885 by Balmer. He found that the simple equation 

2 
= 3646 n2n 4 
 (in A units) 

where n = 3 for H OE , n = 4 for HR , n = 5 for H y , etc., was able to predict the wave-
length of the first nine lines of the series, which were all that were known at the time, 
to better than one part in 1000. This discovery initiated a search for similar empirical 
formulas that would apply to series of lines which can sometimes be identified in the 
complicated distribution of lines that constitute the spectra of other elements. Most 
of this work was done around 1890 by Rydberg, who found it convenient to deal with 
the reciprocal of the wavelength of the lines, instead of their wavelength. In terms of 
reciprocal wavelength K the Balmer formula can be written 

K = 1/11, = RH(1/2 2  — 1/n2)  n = 3, 4, 5, ... (4-10)  
where RH is the so-called Rydberg constant for hydrogen. From recent spectroscopic 

Designation 
of line 

H^ H^ Hy  Hs HE  HI,  Hx 

Near ultraviolet Color  Red  Blue  Violet 

Figure 4-10 A photograph of the visible part of the hydrogen spectrum. (Spectrum from  
W. Finkelnburg, Structure of Matter, Springer-Verlag, Heidelberg, 1964.)  



The Schrödinger equation
How do we calculate these discrete energy levels 

e.g. for the hydrogen atom?

The Schrödinger equation 

H| (r̄, t)i = i~ @
@t

| (r̄, t)i
H = E 

• Operators 
• Wave function 
• Time dependency

Classical mechanics: 
A system (say, a free particle) is described by positions and momenta

Quantum mechanics 
A system (say, a free particle) is described by its wave function 𝜓



The wave function
All the information about the state of a quantum system are contained in  

the wave function 𝜓 

It has to be: 
• Continuous 
• Single valued 
• Finite 
• Smooth 
• Square integrable

It can: 
• be time dependent 
• include an imaginary part

𝜓(x)

x



Born’s interpretation of 𝜓
The connection between 𝜓 and the actual behaviour of the associated system 

(e.g. a particle) is given by The Born Rule:

P (x, t) =  

⇤(r̄, t) ·  (r̄, t)
The probability of finding e.g. a particle at the position r(+dr) and at time t(+dt) is 

equal to the square of the particle's wave function at that point 

• This is a probability density 
• It is always real and non-negative 
• It makes sense: the particle is likely to be found 

where/when 𝜓 has a decent amplitude

𝜓(x)

x

P (a < x < b) =

Z b

a
| (x)|2dx

No time dependence, one dimension (x)…



The Schrödinger equation -II
How do we calculate these discrete energy levels 

e.g. for the hydrogen atom?

The Schrödinger equation 

H| (r̄, t)i = i~ @
@t

| (r̄, t)i
H = E 

• Operators 
• Wave function 
• Time dependency

Operators 
Objects that act on the wave function  

Mathematics makes it easier [matrixes and vectors]

H ) Hamiltonian operator

i~ @

@t
) energy operator



Operators
The Hamiltonian operator 

In analogy with classical mechanics:

H = V +K

The Energy operator 
We “get rid of this” via separation of variables

H| (r̄, t)i = i~ @
@t

| (r̄, t)i
We look for wave functions that can be written as:

 (r̄, t) =  (r̄) ·  (t)  (t) = e�
iEt
~

Time-independent Schrödinger equation:

H (r̄) = E (r̄)

K

one dim.

= � ~
2m

· @

2

@x

2

2



The free particle
The free particle: 

• The zero potential 
• Just the kinetic term 
• One dimension (x)

H (r̄) = E (r̄)

x

We have to solve the Schrödinger equation:

� ~
2m

· @
2
 (x)

@x

2
= E (x)

Remember the time dependence!

 (r̄, t) =  (r̄) · e� iEt
~

2



The free particle - wave function

� ~
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2
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2
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2
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= �2mE
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p
2mE
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be seen, for example, from the fact that the nodes of the real part of the oscillatory 
wave function are located at positions where kx — wt = (n + 1/2)7r, with n =0, + 1, 
± 2, .... The reason is that the real part of `Y(x,t), which is cos (kx — wt), has the 
value zero wherever kx — wt = (n + 1/2)71. Thus the nodes occur wherever x = 
(n + 1/2)7r/k + wt/k and, since these values of x increase with increasing t, the nodes 
travel in the direction of increasing x. The conclusion is illustrated in the top part of 
Figure 6-1 which shows plots of the real part of'P(x,t) at successively later times. For 
this wave function, the probability density P*(x,t)T(x,t), illustrated in the bottom 
of Figure 6-1, conveys no sense of motion. 

Intuition suggests that, for the same value of E, there should also be a wave func-
tion representing a wave traveling in the direction of decreasing x. The preceding 
argument indicates that this wave function would be written with the sign of kx 
reversed, that is 

k(x,t) = e rg kx—wt)  (6-6) 
The corresponding eigenfunction would be 

0(x) = e - ikx  where k = 
 m 

E  (6-7) 

It is easy to see that this eigenfunction is also a solution to the time-independent 
Schroedinger equation for V(x) = 0. In fact, any arbitrary linear combination of the 

Figure 6-1  Top: The real part, cos (kx — cot), of a complex exponential traveling wave 
function, AV = eqNX--0 , for a free particle. With increasing time the nodes move in the di- 
rection of increasing x. Bottom: For this wave funotion a sense of motion is not conveyed by 
plotting the probability density  = e-/(kx- ,,,t)egk`_cot) = 1 since it is constant for all 
t (and all x). Of course, we cannot plot  itself, as it is complex. 
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Figure 6-2 The probability density 'Y*li for a group traveling wave function of a free  

particle. With increasing time the group moves in the direction of increasing x, and also  
spreads.  

turn mechanical calculations, and most such calculations are performed with wave 
functions involving a single wave number and energy. 

Our consideration of the motion of the group in Figure 6-2 leads us to discuss 
briefly a related case of great interest. If, instead of having the constant value zero, 
the potential function V(x) changes so slowly that its value is almost constant over 
a distance of the order of the de Broglie wavelength of the particle, the group wave 
function will still propagate in a manner similar to that illustrated in the figure, but 
the velocity of the group will now also change slowly. Calculations, starting from 
the Schroedinger equation, lead to an expression relating the change in the velocity, 
dx/dt, of the group to the change in the potential, V(x). The expression is 

ddz  d  V(x)  
dt (dt l  dx  m  

or  

dV(x)  
d 2z  dx  F(x)  
dt2  m  m 

where the bars denote expectation values and F(x) is the force corresponding to the 
potential V(x). It is unfortunate that the calculations are too complicated to repro-
duce here. They are very significant because they show that the acceleration of the 
average location of the particle associated with the group wave function equals the 
average force acting on the particle, divided by its mass. That is, Schroedinger's 
equation leads to the result that Newton's law of motion is obeyed, on the average, 
by a particle of a microscopic system. The fluctuations from its average behavior 
reflect the uncertainty principle, and they are very important in the microscopic 
limit. But these fluctuations become negligible in the macroscopic limit where the 
uncertainty principle is of no consequence, and it is no longer necessary to speak of 
averages in talking about locations in that limit Also, in the macroscopic limit any 
realistic potential changes by only a small amount in a distance as short as a de 
Broglie wavelength. So it is also not necessary, in that limit, to speak of averages 
when discussing potentials. Thus, in the macroscopic limit we can ignore the bars 



The free particle - energy levels

E =
k2~2
2m

8E � 0

There are no restrictions on the value of k…

• Energy levels are not quantised 
• This is identical to the classical case

What happens if instead of V(x)=0…



The particle in the box

 2(x)

 

⇤
2(x) ·  2(x) = | 2(x)|2



The box

x

V

x = 0 x = L

V (x) = 1 V (x) = 1
V (x) = 0

V (x) =

(
0, for 0  x  L

1, for x < 0 or x > L



Not so boring!

Beta-Carotene

Lauric Acidx

V

x = 0 x = L

V (x) = 1 V (x) = 1
V (x) = 0

V (x) =

(
0, for 0  x  L

1, for x < 0 or x > L

Hint 
One of the two is a conjugated system…

2 3



Particle in a box ~ conjugated systems

x = 0

V (x) = 1

• Conjugated system (22 conjugated C-C bonds) 
• The (22) conjugated electrons are delocalised across the whole chain 
• They are (more or less) free to move across the chain 
• They (roughly) feel the same potential at each point

• Saturated bonds  
• Localised states - electrons are mostly bound  
• Functional (polar!) group unbalance the potential across the chain

Beta-Carotene

Lauric Acid

V (x) = const.

V



Particle in a box - the wave function

x

V

x = 0 x = L

V (x) = 1 V (x) = 1
V (x) = 0

The wave function if that of the free particle in 
one dimension!

 (x) = ↵ cos(kx) + � sin(kx)

Particle in a Box:  
The wave function has to be continuous everywhere

 (x = 0) =  (x = L) = 0

, k =

p
2mE

~

Within the box ) V (x) = 0

 (x = 0) = ↵ cos(0) + � sin(0) = 0 ) ↵ = 0

 (x = L) = ↵ cos(kL) + � sin(kL) = 0 ) � sin(kL) = 0

) kL = n⇡ , 1, 2 . . . ) k =
n⇡

L
, 1, 2 . . .

1.

2.



Particle in a box - the wave function

x

V

x = 0 x = L

V (x) = 1 V (x) = 1
V (x) = 0

The wave function if that of the free particle in 
one dimension!

 (x) = ↵ cos(kx) + � sin(kx)

Particle in a Box:  
The wave function has to be continuous everywhere

, k =

p
2mE

~

Within the box ) V (x) = 0

 (x) = ↵ cos(kx) + � sin(kx)

↵ = 0 and k =
n⇡

L
, 1, 2 . . .

Particle in a Box Wave Function 

 n(x) = � sin
⇣
n⇡

L

x

⌘

1. 2.



            has           nodes (points other than                                for which                   ) n(x) n� 1  n(x) = 0
x = 0 and x = L

x

V

x = 0 x = L

 3(x)

 n(nodes) = 0

 n(0, L) = 0

Particle in a box - the wave function



For (infinitely) large values of      the particle can be found anywhere in the box 
with the same probability

n

Where is the particle?

Probability density

 

⇤
n(x) ·  n(x) = | n(x)|2

Particle in a box - probability density

4



Correspondence principle

x

V

x = 0 x = L

V (x) = 1

E1

E2

E3

E4

Probability density

 

⇤
n(x) ·  n(x) = | n(x)|2

True!

Correspondence Principle 
In the limit of large quantum numbers, we recover classical mechanics

For (infinitely) large values of      the particle can be found anywhere in the box 
with the same probability

n



Particle in a box - energy levels

functions. If it is necessary to apply the normalization condition, the constants A" and 
B", which specify the amplitudes of the eigenfunctions, will thereby be determined 
(see Example 5-10); but it is not usually necessary to do this. 

The quantum number  n is also used to label the corresponding eigenvalues. Using 
the relation k = /2mE/h of (6-67), and the expression k" = nt/a in (6-79) and (6-80) 
for the allowed values of k, we find 

h2 k2  7c2 h2 n2  
E" =  "=  2  n=1,2,3,4,5,... (6-81) 2m 2ma 

Thus we conclude that only certain values of the total energy E are allowed. The 
total energy of the particle in the box is quantized. 

The quantitative treatment of the finite square well, discussed in the preceding section and 
carried out in Appendix H, is essentially the same as what we have just gone through. But the 
penetration of the eigenfunction into the regions outside the well, which varies with the energy 
of the associated eigenvalue, leads to more complicated transcendental equations for k that 
must_be solved graphically or numerically. 

Figure 6-30 illustrates the infinite square well potential and its first few eigenvalues 
specified by (6-81). Of course, all the eigenvalues are discretely separated for an in-
finite square well potential since the particle is bound for any finite eigenvalue. Note 
that the pattern formed by the first three eigenvalues of the infinite square well is 
quite similar to that formed by the three bound eigenvalues of the finite square well 
shown in Figure 6-25. In this regard, the infinite square well results provide an ap-
proximation to the finite square well results. However, in detail each potential energy 
function V(x) has its own characteristic set of bound eigenvalues En . 

Of particular interest is the energy of the first eigenvalue. For the infinite square 
well it is 

n2h2  
E1 =

2ma2  (6-82) 

This is called the zero-point energy. It is the lowest possible total energy the particle 
can have if it is bound by the infinite square well potential to the region — a/2 < x < 
+a/2. The particle cannot have zero total energy. The phenomenon is basically a result 
of the uncertainty principle. To see this, consider the fact that if the particle is bound 
by the potential, then we know its x coordinate to within an uncertainty of about 
Ax ^ a. Consequently, the uncertainty in its x momentum must be at least Ap 
h/2Ax ^ h/2a. The uncertainty principle cannot allow the particle to be bound by the 

V(x) 

Figure 6-30 The first few eigenvalues of an 
— a/2  0  +a/2  --  infinite square well potential. 

1`
dI

1N
31

0d
 T

O
M

  3
ad

f 1
O

S 
31

IN
Id

NI
  3

H1
 

k =

p
2mE

~ and k =
n⇡

L

En =
~2n2⇡2

2mL2
, with n = 1, 2, ...

• Energy levels are quantised 
• There exist a zero point energy 
• 2D box introduces degeneracy

E
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~2⇡2
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+ n2
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with n
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Particle in a box - degenerate states

If A[n
x

= 1, n
y

= 2] and B[n
x

= 2, n
y

= 1]

E(A) =
~2⇡2

2mL

2
· 5 = E(B)

 (A) =

r
2

L

· sin
⇣
⇡x

L

⌘
·
r

2

L

· sin
✓
2⇡y

L

◆
6=

r
2

L

· sin
✓
2⇡x

L

◆
·
r

2

L

· sin
⇣
⇡y

L

⌘

In the case of a rectangular but not square box, the symmetry and the
degeneracy are lost. However, sometimes degeneracy is encountered where there
is no rotation that transforms one wavefunction into another; it is then called
accidental degeneracy. In certain cases, accidental degeneracy is known to arise
when the full symmetry of the system has not been recognized, and a deeper
analysis of the system shows the presence of a hidden symmetry that does inter-
relate the degenerate functions. It may be the case that all accidental degeneracies
canbe tracedto theexistenceofhiddensymmetries.Accidentaldegeneracyoccurs
in the hydrogen atom, and we shall continue the discussion there.

Example 2.1 Hidden symmetry and accidental degeneracy

Show that in a rectangular box with sides L1¼L and L2¼ 2L there is an
accidental degeneracy between the states j1,4i and j2,2i.

Method. To confirm the degeneracy, all we need do is to substitute the data
into the expression for the energy, eqn 2.35.

Answer. The two states have the following energies:

E1;4 ¼
h2

8m

12

L2
þ 42

ð2LÞ2

 !

¼ 5h2

8mL2

E2;2 ¼
h2

8m

22

L2
þ 22

ð2LÞ2

 !

¼ 5h2

8mL2

The energies are the same, despite the lack of symmetry.

Comment. In fact, inspection of the wavefunctions (Fig. 2.25) shows that there
is a kind of hidden symmetry, as one half of the box can be rotated relative to
the other half, and as a result the two wavefunctions are interconverted,
including their behaviour at their nodes and at the walls.

Self-test 2.1. Find other examples of degeneracy in this system.
[For instance, the pair (j2,8i, j4,4i)]

The harmonic oscillator

We now turn to one of the most important individual topics in quantum
mechanics, the harmonic oscillator. Harmonic oscillations occur when a
system contains a part that experiences a restoring force proportional to the
displacement from equilibrium. Pendulums and vibrating strings are familiar
examples. An example of chemical importance is the vibration of atoms in a
molecule. Another example is the electromagnetic field, which can be treated
as a collection of harmonic oscillators, one for each frequency of radiation
present. The importance of the harmonic oscillator also lies in the way that
the same algebra occurs in a variety of different problems; for example, it also
occurs in the treatment of rotational motion.

(a)

(b)

x
y

Fig. 2.25 An example of accidental
degeneracy: the two functions shown
here schematically are degenerate
even though one cannot be
transformed into the other by a
symmetry transformation of the
system. Note, however, that a hidden
symmetry (the separate rotation of
the two halves of the box) does
interconvert them.

+
–

+

–

x y

(a)

(b)

Fig. 2.24 A contour representation of
the two degenerate states (a) n1¼ 2,
n2¼1 and (b) n1¼ 1, n2¼ 2 for
a particle in a square square well.
Note that one wavefunction is
rotated into the other by a symmetry
transformation of the box (its
rotation through 90% about a vertical
axis). In this perspective view, the
plane looks oblong; it is in fact
square.

60 j 2 LINEAR MOTION AND THE HARMONIC OSCILLATOR

nx=1, ny=2

nx=2, ny=1
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The hydrogen atom

This is one of the very few cases where we can solve Schrödinger equation analytically 
As in the case of e.g. the free particle and the particle in the box 

Even just for the helium atom, no closed-form solution can be found

The Schrödinger equation for the hydrogen atom

1. Reduced mass 𝜇

^ 

Actual system  
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Figure 7-1 Left: In an actual one-electron atom, an electron of mass m and nucleus of  
mass M move about their fixed center of mass. Right: In the equivalent model atom, a  
particle of reduced mass  moves about a stationary nucleus of infinite mass.  

must be completely stationary, it is necessary to treat only the motion of the reduced  

mass electron in the model atom, and the problem is therefore simplified from one  

involving a pair of moving particles to one involving only a single moving particle.  
In classical mechanics, the motion of the reduced mass electron about the sta-

tionary nucleus in the model atom exactly duplicates the motion of the electron  

relative to the nucleus in the actual atom. Furthermore, the total energy of the model  

atom, which is just the total energy of its reduced mass electron, equals the total  

energy of the actual atom in a frame of reference in which its center of mass is at  

rest. The student may have seen a proof of these results of classical mechanics in  

connection with the motion of a planet about the sun, or some other system involving  

the motion of two particles. It is not difficult to prove that the same results are  

obtained in quantum mechanics, but we shall not bother to do so here. Figure 7-1  

indicates the behavior of the electron and the nucleus in the actual atom and in the  

model atom. In both cases the center of mass of the atom is at rest.  

7-2 DEVELOPMENT OF THE SCHROEDINGER EQUATION  
We consider, therefore, an electron of reduced mass  which is moving under the  

influence of the Coulomb potential  
z 

V = V(x,y,z) =  
— Ze  (7-2)  

47r€0 .\/x 2  + y2  + z2  
where x, y, z are the rectangular coordinates of the electron of charge  —e relative 
to the nucleus, which is fixed at the origin. The square root in the denominator is 
just the electron-nucleus separation distance r. The nuclear charge is +Ze (Z = 1 for 
neutral hydrogen, Z = 2 for singly ionized helium, etc.). 

As a first step, we must develop the Schroedinger equation for this three-dimen-
sional system. We do this by using the procedure indicated in Section 5-4. We first 
write the classical expression for the total energy E of the system 

2µ (px2  + p;, + pz) + V(x,y,z) = E  (7-3)  
The quantities px , py,, pZ  are the x, y, z components of the linear momentum of the 
electron. Thus the first term on the left is the kinetic energy of the system, while the 
second term is its potential energy. Now we replace the dynamical quantities px, p,,, pZ,  
and E by their associated differential operators, using an obvious three-dimensional 
extension of the scheme in (5-32). This gives us the operator equation 

Z2 2 a2 a 

µ ax 2 + ây2  + az2  + V(x,y,z) = ih at 
 (7-4)  

µ =

✓
M

nucleus

m
electron

+M
nucleus

◆
·m

electron

= 0.995 m
electron



The hydrogen atom
So that we have an electron with reduced mass 𝜇  

interacting with the nucleus via the Coulomb potential

V =
q
nucleus

· q
electron

4⇡✏
0

r̄
nucleus-electron

=
Ze ·�e

4⇡✏
0

· r̄ = � e2

4⇡✏
0

· r̄
The Hamiltonian of the system is thus:

H = � ~2
2µ

r2 � e2

4⇡✏0 · r̄

(Spherical) polar coordinates & separation of variables (radial and angular [polar + azimuth] parts)…

Energy levels

En = � µZ2e4

(4⇡✏0)22~2n2
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7-5 EIGENVALUES, QUANTUM NUMBERS, AND DEGENERACY 

One of the important results of the Schroedinger theory of the one-electron atom is 
the prediction of (7-22) for the allowed values of total energy of the bound states of 
the atom. Comparing this prediction for the eigenvalues 

itZ 2e4  13.6 eV En _ (4irc0)22h2n2 -  n2  
with the predictions of the Bohr model (see (4-18)), we find that identical allowed en-
ergies are predicted by these treatments. Both predictions are in excellent agreement 
with experiment. Schroedinger's derivation of (7-22) provided the first convincing 
verification of his theory of quantum mechanics. Figure 7-3 illustrates the Coulomb 
potential V(r) for the one-electron atom, and its eigenvalues En . 

What is the relation between the Coulomb potential and its eigenvalues, and the 
potentials studied in Chapter 6 and their eigenvalues? One obvious difference is that 
the quantum mechanical calculations leading to the eigenvalues of the Coulomb 
potential are appreciably more complicated. But the Coulomb potential is an exact 
description of a real three-dimensional system. The potentials previously treated are 
approximate descriptions of idealized one-dimensional systems, which are designed 
to simplify the calculations. Part of the complication for the Coulomb potential is 
also due to its spherical symmetry, which forces the use of spherical polar coordinates 
instead of rectangular coordinates. 

The similarities are much more fundamental than the differences. For the Coulomb 
potential, as for any other binding potential, the allowed total energies of a particle 
bound to the potential are discretely quantized. Figure 7-4 makes a comparison be-
tween the allowed energies for a Coulomb potential and for several one-dimensional 
binding potentials. In this figure the Coulomb potential is represented on a crosscut 
along a diameter through the one-electron atom. Note that all the binding potentials 
have a zero-point energy. That is, in all cases the lowest allowed value of total energy 
lies above the minimum value of the potential energy. Associated with its zero-point 
energy, the one-electron atom has a zero-point motion like other systems described 
by binding potentials. In the following section we shall see that this phenomenon can 
give us a basic explanation of the stability of the ground state of the atom. 

Figure 7-3 The Coulomb potential V(r) and its eigenvalues En . For large values of n the 
eigenvalues become very closely spaced in energy since E„ approaches zero as n 
approaches infinity. Note that the intersection of V(r) and En , which defines the location 
of one end of the classically allowed region, moves out as n increases. Not shown in this 
figure is the continuum of eigenvalues at positive energies corresponding to unbound 
states. 

A
0`

d1
: 13

N
30

3a
 4

N
`d

 ̀S
b3

81
A1

f1
N

 W
f1

1M
df

10
 ̀S

31
1-

1t
lA

N
30

13
 

The hydrogen atom - energy levels

En = � µZ2e4

(4⇡✏0)22~2n2

Energy levels are quantised 
(the Coulomb potential is a binding potential)

n = 1, 2, … , ∞  
Principal quantum number
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by free atoms is concentrated at a number of discrete wavelengths. Each of these wave-
length components is called a line because of the line (image of the slit) which it pro-
duces on the photographic plate. Investigation of the spectra emitted from different 
kinds of atoms shows that each kind of atoms has its own characteristic spectrum, 
i.e., a characteristic set of wavelengths at which the lines of the spectrum are found. 
This feature is of greatest practical importance because it makes spectroscopy a very 
useful addition to the usual techniques of chemical analysis. Chiefly for this reason  

much effort was devoted to the accurate measurement of atomic spectra, and, in fact, 
much effort was needed because the spectra consist of many hundreds of lines and 
in general are very complicated. 

However, the spectrum of hydrogen is relatively simple. This is perhaps not sur-
prising since hydrogen, which contains just one electron, is itself the simplest atom. 
Most of the universe consists of isolated hydrogen atoms so that the hydrogen spec-
trum is of considerable practical interest. There are historical and theoretical reasons 
as well for studying it, as will become apparent later. Figure 4-10 shows that part of 
the atomic hydrogen spectrum which falls approximately within the wavlength range 
of visible light. We see that the spacing, in wavelengths, between adjacent lines of the 
spectrum continuously decreases with decreasing wavelength of the lines, so that the 
series of lines converges to the so-called series limit at 3645.6 A. The short wavelength 
lines, including the series limit, are hard to observe experimentally because of their 
close spacing and because they are in the ultraviolet. 

The obvious regularity of the H spectrum tempted several people to look for an 
empirical formula which would represent the wavelength of the lines. Such a formula 
was discovered in 1885 by Balmer. He found that the simple equation 

2 
= 3646 n2n 4 
 (in A units) 

where n = 3 for H OE , n = 4 for HR , n = 5 for H y , etc., was able to predict the wave-
length of the first nine lines of the series, which were all that were known at the time, 
to better than one part in 1000. This discovery initiated a search for similar empirical 
formulas that would apply to series of lines which can sometimes be identified in the 
complicated distribution of lines that constitute the spectra of other elements. Most 
of this work was done around 1890 by Rydberg, who found it convenient to deal with 
the reciprocal of the wavelength of the lines, instead of their wavelength. In terms of 
reciprocal wavelength K the Balmer formula can be written 

K = 1/11, = RH(1/2 2  — 1/n2)  n = 3, 4, 5, ... (4-10)  
where RH is the so-called Rydberg constant for hydrogen. From recent spectroscopic 

Designation 
of line 

H^ H^ Hy  Hs HE  HI,  Hx 

Near ultraviolet Color  Red  Blue  Violet 

Figure 4-10 A photograph of the visible part of the hydrogen spectrum. (Spectrum from  
W. Finkelnburg, Structure of Matter, Springer-Verlag, Heidelberg, 1964.)  

Quantitative agreement with the experimental spectrum
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7-5 EIGENVALUES, QUANTUM NUMBERS, AND DEGENERACY 

One of the important results of the Schroedinger theory of the one-electron atom is 
the prediction of (7-22) for the allowed values of total energy of the bound states of 
the atom. Comparing this prediction for the eigenvalues 

itZ 2e4  13.6 eV En _ (4irc0)22h2n2 -  n2  
with the predictions of the Bohr model (see (4-18)), we find that identical allowed en-
ergies are predicted by these treatments. Both predictions are in excellent agreement 
with experiment. Schroedinger's derivation of (7-22) provided the first convincing 
verification of his theory of quantum mechanics. Figure 7-3 illustrates the Coulomb 
potential V(r) for the one-electron atom, and its eigenvalues En . 

What is the relation between the Coulomb potential and its eigenvalues, and the 
potentials studied in Chapter 6 and their eigenvalues? One obvious difference is that 
the quantum mechanical calculations leading to the eigenvalues of the Coulomb 
potential are appreciably more complicated. But the Coulomb potential is an exact 
description of a real three-dimensional system. The potentials previously treated are 
approximate descriptions of idealized one-dimensional systems, which are designed 
to simplify the calculations. Part of the complication for the Coulomb potential is 
also due to its spherical symmetry, which forces the use of spherical polar coordinates 
instead of rectangular coordinates. 

The similarities are much more fundamental than the differences. For the Coulomb 
potential, as for any other binding potential, the allowed total energies of a particle 
bound to the potential are discretely quantized. Figure 7-4 makes a comparison be-
tween the allowed energies for a Coulomb potential and for several one-dimensional 
binding potentials. In this figure the Coulomb potential is represented on a crosscut 
along a diameter through the one-electron atom. Note that all the binding potentials 
have a zero-point energy. That is, in all cases the lowest allowed value of total energy 
lies above the minimum value of the potential energy. Associated with its zero-point 
energy, the one-electron atom has a zero-point motion like other systems described 
by binding potentials. In the following section we shall see that this phenomenon can 
give us a basic explanation of the stability of the ground state of the atom. 

Figure 7-3 The Coulomb potential V(r) and its eigenvalues En . For large values of n the 
eigenvalues become very closely spaced in energy since E„ approaches zero as n 
approaches infinity. Note that the intersection of V(r) and En , which defines the location 
of one end of the classically allowed region, moves out as n increases. Not shown in this 
figure is the continuum of eigenvalues at positive energies corresponding to unbound 
states. 
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The hydrogen atom - zero point energy

En = � µZ2e4

(4⇡✏0)22~2n2

The lowest energy level lies above the minimum of the potential: 
Zero-point energy

n = 1, 2, … , ∞  
Principal quantum number
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+ 03  

Simple harmonic 
oscillator 
 Coulomb 

Figure 7-4 A comparison between the allowed energies of several binding potentials. The 
three-dimensional Coulomb potential is shown in a cross-sectional view along a diameter; 
the other potentials are one-dimensional. 

Although the eigenvalues of the one-electron atom depend on only the quantum 
number n, the eigenfunctions depend on all three quantum numbers n, 1, m 1  since 
they are products of the three functions &t(), (1) i„,,(e), and (I),„,((p). The fact that 
three quantum numbers arise is a consequence of the fact that the time-independent 
Schroedinger equation contains three independent variables, one for each space coor- 
dinate. Gathering together the conditions which the quantum numbers satisfy, we 
have 

lmil =0,1,2,3,... 
l=lmil, lmil +1,lmil+ 2,lmil+ 3,...  (7-26) 
n=1+1,1+2, 1 +3,... 

These conditions are more conveniently expressed as 
n = 1,2,3,... 
1= 0, 1,2,...,n-1  (7-27) 

m 1 = —1, —1+1, ... , 0, ..., +1-1,1 

Example 7-1. Show that the conditions of (7-27) are equivalent to those of (7-26). 
10. According to (7-26) the minimum value of 1 is equal to Imi l , and the miminum value of 
Imil is O. Thus the minimum value of / is 0 and the minimum value of n, which is equal to 
1 + 1, is 0 + 1 = 1. Since n increases by integers without limit, the possible values of n are 
n = 1, 2, 3, .... For a given n, the maximum value of l is the one satisfying the relation 
n = 1 + 1, that is, 1 = n — 1. Consequently the possible values of 1 are  1= 0, 1, 2, ... , n — 1. 
Finally, for a given 1, the largest value which l  mi l can assume is l m i l = 1. Thus the maximum 
value of mi  is +1 and the minimum value is —1, and it can assume only the values mi  = —1, 
—1 + 1,  , 0,  , +1 — 1, +1. • 

Because of its role in specifying the total energy of the atom, n is sometimes called 
the principal quantum number. Because the azimuthal, or orbital, angular momentum 
of the atom depends on 1, as we shall soon see, 1 is sometimes called the azimuthal 
quantum number. We shall also see that if the atom is in an external magnetic field 
there is a dependence of its energy on m i . Consequently, m 1  is sometimes called the 
magnetic quantum number. 

The conditions of (7-27) make it apparent that for a given value of n there are 
generally several different possible values of 1 and m i . Since the form of the eigen-
functions depends on all three quantum numbers, it is apparent that there will be 
situations in which two or more completely different eigenfunctions correspond to 
exactly the same eigenvalue E. As the eigenfunctions describe the behavior of the 
atom, we see that it has states with completely different behavior that nevertheless 
have the same total energy. In physics the word used to characterize this phenomenon 
is degeneracy, and eigenfunctions corresponding to the same eigenvalue are said to 
be degenerate. There is little relation to the common usage of the word; degenerate 
eigenfunctions are not at all reprehensible! 

Finite 
square well 

6



The hydrogen atom - wave functions 
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Table 7-2 Some Eigenfunctions for the One-Electron Atom  
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 n,l,ml(r, ✓,�) = Rn,l(r) · Yl,ml(✓,�)

Rn,l(r) = e�
constant·r

n · rl ) polynomial in r [Radial part]

• The principal quantum number n is related to energy [n > 0] 
• The orbital quantum number l is related to angular momentum [0 < l < n-1] 
• The magnetic quantum number ml is related to direction of the angular momentum of the electron  [-l < ml < +l]

Yl,ml(✓,�) = eiml� · sin|ml| ✓ ) spherical harmonics [Angular part]
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probability of finding the electron at any location with radial coordinate between r  
and r + dr. By integrating the probability density `F*`h which is a probability g  g  p  Y  Y  ̂  p  YPer  
unit volume, over the volume enclosed between spheres of radii r and r + dr, it is  m  
easy to show that  P 

 

P„l(r) dr = R,*,i(r)R„1(r)4itr2  dr  (7-28)  
The factor of 4nzr 2  is present on the right side because the volume enclosed between  
the spheres is given by that factor. The use of the quantum numbers n and l as labels  

to specify the form of a particular radial probability density function is obviously ap-
propriate, but the form of these functions does not depend on the quantum number  

mi . Figure 7-5 plots several P„l (r), using dimensionless quantities for each axis. 

0.1  

10  15  20  25  
r  

ao/Z 
Figure 7 -5 The radial probability density for the electron in a one-electron atom for n =  
1, 2, 3 and the values of / shown. The triangle on each abscissa indicates the value of  

r„i  as given by (7-29). For n = 2 the plots are redrawn with abscissa and ordinate scales  
expanded by a factor of 10 to show the behavior of P„I (r) near the origin. Note that in the  
three cases for which 1 = /max = n —  1 the maximum of Pn1 (r) occurs at rBohr  = n 2a o/Z,  
which is indicated by the location of the dashed line. 
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The hydrogen atom - probability densities 
In principle we should look at…

 ⇤ = R⇤
n,l(r) · Y ⇤

l,ml
(✓,�) ·Rn,l(r) · Yl,ml(✓,�)

Pn,l(r)dr = R⇤
n,l(r) ·Rn,l(r)4⇡r

2dr

Radial probability density

• n determines:  
- the extent (r) of the probability 
- the number of nodes NN in 𝜓  

(and thus P(r) as well) [NN=n-1] 
• l determines the shape of the probability

• P(r) decays quite rapidly 
• P(r) is not homogeneous

7
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1=3 , m1 =±1  

z 

1 =3 , m1 = ±2  

z z 

1 =3, m i = ±3  

z 

1=1,m1= ±1 1=2,m1=±2  

1 = 3,m1 =0  
Figure 7-8 Polar diagrams of the directional dependence of the one-electron atom prob-
ability densities for / = 3; m 1  = 0, ±1, ±2, ±3.  

In Figure 7-8 we illustrate an example of the dependence of the form of Oi ,(9)O 1m,(9)  
on the quantum number m l , by a set of polar diagrams for l = 3, and the seven possible  

values of m 1  for this value of 1, i.e., for m 1  = — 3, — 2, —1, 0, 1, 2, 3. Note  the way in which  
the region of concentration of O*,,,(9)O 1m,(9), and therefore Otnitfrnlmi,  shifts from the z  
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The hydrogen atom - atomic orbitals 
Radial and angular results together…

Atomic (hydrogen-like) orbitals

• n ➟ size 
• l ➟ shape 
• ml ➟ orientation

Labelling:

nl(s, p, d...)n. electrons e.g. 3d2

Each atomic orbital can host  
up to two electrons 

Spin quantum number mS  
from Dirac equation



Orbital angular momentum (L)
The quantum number l is related to  

the orbital angular momentum L of the electron

L describes the “orbital” motion of the electron about the center of the atom 

This motion can be described in terms of spherical harmonics

The two quantities are related by the following equation:

L2| i = ~2l(l + 1)| i



Spin (S)
Electrons (well, in fact any elementary particle!) have an  

intrinsic angular momentum as well, S

S describes the “intrinsic” motion of the electron about its center of mass… 

Exactly as in the case of L…

S2| i = ~2s(s+ 1)| i

• There is no direct analogy with classical mechanics 
• s is not related to positions and/or angles 
• It is something so fundamental that every particle has its own spin - its own value os s 



Spin - electrons
“Ordinary” matter has s=1/2 

The Higgs boson has s=0

Integral or zero spin: 
bosons

Half-integral spin: 
fermions

The wave function is 
symmetric  

under particle interchange

The wave function is  
antisymmetric  

under particle interchange

In classical mechanics we can label particles:

Gasser, U., et al. (2001).  
Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization.  

Science 292, 258–262.



Spin - electrons
In quantum mechanics, usually we cannot: 

particles are indistinguishable

Suppose we have two particles (say, two electrons), 1 and 2 
and two states, A and B (four quantum number included in one letter!)

The combined wave functions of the system are:

 
Combined

=  A(1) B(2) or  B(1) A(2)

This does not work, though!  
The probability density is not the same if I swap 1 with 2!

 ⇤
A(1) 

⇤
B(2) ·  A(1) B(2) 6=  ⇤

A(2) 
⇤
B(1) ·  A(2) B(1)

However, we can construct linear combinations in order to make things right:

 Symmetric

Combined

=
1

2
[ A(1) B(2) +  B(1) A(2)]

 Antisymmetric

Combined

=
1

2
[ A(1) B(2)�  B(1) A(2)]

Integral or zero spin: bosons

Half-integral spin: fermions



The exclusion principle

 Antisymmetric

Combined

=
1

2
[ A(1) B(2)�  B(1) A(2)]

Consider two electrons in exactly the same state A:

 Antisymmetric

Combined

=
1

2
[ A(1) A(2)�  A(1) A(2)]

Pauli expulsion principle: 
 Two electrons cannot occupy exactly the same state



Note that for fermions/bosons 
the total wave function has to be antisymmetric/symmetric

Singlet and Triplet states

 =  Spatial ·  Spin

For fermions (e.g. electrons):

 =  Antisymmetric
Spatial ·  Symmetric

Spin or  Symmetric
Spatial ·  Antisymmetric

Spin

cording to (9-9), the total eigenfunction for the system can be written  

^A =  12 [0.( 1)1M2) — ^R( 1)tka(2)] 
z  

This antisymmetric total eigenfunction depends on both the space variables and the  

spin variables of the two electrons since the symbols oc,  /3, y, ... specify sets of three  
space quantum numbers plus one spin quantum number. For the present discussion  

we rewrite it in such a way that the space and spin variables occur in separate factors,  

i.e.  
(total eigenfunction) = (space eigenfunction) x (spin eigenfunction)  

We also make both factors have a definite symmetry with respect to exchange of the  

particle labels. Antisymmetry of the total eigenfunction can then be obtained by  

multiplying a symmetric space eigenfunction times an antisymmetric spin eigenfunc-
tion, or by multiplying an antisymmetric space eigenfunction times a symmetric spin  

eigenfunction.  
The normalized symmetric and antisymmetric space eigenfunctions have the forms  

we used in Example 9-1  
symmetric space  1  
eigenfunction:   [fra( 1 )0b(2) + tfrb( 1»a(2)]  

antisymmetric space 1  
eigenfunction:   [1fra(1)042) — O b(1)0a(2)]  

where IIi a(1)1/i b(2) and tJi b(1)1/42) are normalized. Each symbol from the series a, b,  
c, ... represents a particular set of the three space quantum numbers only (in contrast  

to the a, /3, y ,  ... , which represent sets of three space and one spin quantum number).  

Of course these forms are very general, there being a wide variety of different Oa  and  
4/b for different systems. 

The forms of the symmetric and antisymmetric spin eigenfunctions are quite an-
other matter. The reason is that the spin variable is not continuous like a space vari-
able, but instead is discrete. For instance, the spin of a single electron can have only 
two discrete orientations relative to any z axis since its z component is either + 1/2 
or —1/2, in units of  h. Continuous functions, such as those displayed in the one-
electron atom space eigenfunctions of Table 7-2, therefore cannot be used for spin 
eigenfunctions. For the case of two noninteracting electrons, each of which has two 
possible spin orientations, there are only four possible spin states for the system, and 
therefore only four possible spin eigenfunctions. Because there are so few we can dis-
play their specific forms. If these four spin eigenfunctions for the system are written 
so as to have definite symmetries, then one will be antisymmetric and the other three 
symmetric. Matrices are frequently employed to write mathematical expressions for 
the spin eigenfunctions, but here we shall write them in terms of combinations of the 
symbols + 1/2 and —1/2 because their interpretations will be more obvious. 

The only possible antisymmetric spin eigenfunction for two noninteracting elec- t trons is 
antisymmetric spin  1 

eigenfunction:  N/1-
2[(+ 1/2, — 1/2) — (-1/2, + 1/2)] (singlet)  (9-17) 

This is a linear combination of a symbol (+ 1/2, — 1/2) that specifies a state where 
the z components of the spins have values, in units of h, of + 1/2 for electron 1 and 
—1/2 for electron 2, minus a symbol (-1/2, + 1/2) that specifies a state where the z 

 components are —1/2 for electron 1 and + 1/2 for electron 2. Due to the minus sign 
between the symbols, the linear combination is antisymmetric in an exchange of the 
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labels of the two electrons since such an exchange would convert the first symbol to 
(-1/2, +1/2) and the second symbol to (+ 1/2, — 1/2), thereby changing the overall 
sign of the linear combination. We shall not need to further manipulate these symbols 
and their linear combinations, and we shall only use them to describe spin states. So 
it will not be necessary for us to further specify their mathematical (i.e., matrix) 
properties. 

There are three possible symmetric spin eigenfunctions 
(+ 1/2, + 1/2) 

symmetric spin 1 
eigenfunctions:  [(+ 1/2, — 1/2) + (-1/2, + 1/2)  (triplet) (9-18) 

(— 1/2, —1/2) 
Their symmetry is obvious since for each an exchange of labels results in no change 
in the eigenfunction. These three describe the so-called triplet states, and the anti-
symmetric eigenfunction describes the so-called singlet state. All four of these spin 
eigenfunctions are normalized. 

A physical interpretation of the singlet and triplet states can be obtained by eval-
uating, for each state, the magnitude S' and z component Sz of the total spin angular 
momentum S'. This vector is 

S'= S1+S2  (9-19) 
the sum of the spin angular momenta of the two electrons. As is true for all angular 
momenta in quantum mechanics, S' and Sz are quantized according to the relations 

S' = /s'(s'+ 1)h 
Sz = msh 

z 

(9-20) 

Triplet  Singlet 
Figure 9-2 Vector diagrams representing the rules for adding the quantum numbers 
s i  = 1/2 and s 2  = 1/2 to obtain the possible values for the quantum numbers s' and ms. 
Left: The maximum possible value of s' is obtained when a vector of magnitude s i  is added 
to a parallel vector of magnitude s2 , yielding s' = s i  + s2  = 1/2 + 1/2 = 1. The maximum 
possible z component of this vector gives the maximum possible value of the quantum 
number ms, and the minimum possible z component gives the minimum possible value 
of ms. The intermediate values of ms (only one in this case) differ by integers. Thus the 
possible values are  m's = +1, 0, —1. Right: A vector of magnitude s i  = 1/2 is added to an 
antiparallel vector of magnitude s 2  = 1/2 to yield a vector of magnitude s' = s 1  — s 2  = 
1/2 — 1/2 = O. A vector whose length is zero must have z component zero as well, so the 
only possible value for ms is zero. The term triplet refers to the state s' = 1 where three 
possible values of ms arise; the term singlet refers to the state s' = 0 where only one 
possible value of m' arises. 

N 
T 

M
U

LT
IE

LE
C

TR
O

N
 A

TO
M

S-
GR

OU
ND

 S
TA

TE
S 

AN
D 

X-
RA

Y 
EX

CI
TA

TI
O

N
S 

labels of the two electrons since such an exchange would convert the first symbol to 
(-1/2, +1/2) and the second symbol to (+ 1/2, — 1/2), thereby changing the overall 
sign of the linear combination. We shall not need to further manipulate these symbols 
and their linear combinations, and we shall only use them to describe spin states. So 
it will not be necessary for us to further specify their mathematical (i.e., matrix) 
properties. 

There are three possible symmetric spin eigenfunctions 
(+ 1/2, + 1/2) 

symmetric spin 1 
eigenfunctions:  [(+ 1/2, — 1/2) + (-1/2, + 1/2)  (triplet) (9-18) 

(— 1/2, —1/2) 
Their symmetry is obvious since for each an exchange of labels results in no change 
in the eigenfunction. These three describe the so-called triplet states, and the anti-
symmetric eigenfunction describes the so-called singlet state. All four of these spin 
eigenfunctions are normalized. 

A physical interpretation of the singlet and triplet states can be obtained by eval-
uating, for each state, the magnitude S' and z component Sz of the total spin angular 
momentum S'. This vector is 

S'= S1+S2  (9-19) 
the sum of the spin angular momenta of the two electrons. As is true for all angular 
momenta in quantum mechanics, S' and Sz are quantized according to the relations 

S' = /s'(s'+ 1)h 
Sz = msh 

z 

(9-20) 

Triplet  Singlet 
Figure 9-2 Vector diagrams representing the rules for adding the quantum numbers 
s i  = 1/2 and s 2  = 1/2 to obtain the possible values for the quantum numbers s' and ms. 
Left: The maximum possible value of s' is obtained when a vector of magnitude s i  is added 
to a parallel vector of magnitude s2 , yielding s' = s i  + s2  = 1/2 + 1/2 = 1. The maximum 
possible z component of this vector gives the maximum possible value of the quantum 
number ms, and the minimum possible z component gives the minimum possible value 
of ms. The intermediate values of ms (only one in this case) differ by integers. Thus the 
possible values are  m's = +1, 0, —1. Right: A vector of magnitude s i  = 1/2 is added to an 
antiparallel vector of magnitude s 2  = 1/2 to yield a vector of magnitude s' = s 1  — s 2  = 
1/2 — 1/2 = O. A vector whose length is zero must have z component zero as well, so the 
only possible value for ms is zero. The term triplet refers to the state s' = 1 where three 
possible values of ms arise; the term singlet refers to the state s' = 0 where only one 
possible value of m' arises. 



Singlet and triplet states have different energies!

Singlet and Triplet states

e.g. energy levels of the helium atom
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Figure 9-7 The low-lying energy levels of helium. Left: The levels that would be found if 
there were no Coulomb interaction between its electrons. Center: The levels that would be 
found if there were a Coulomb interaction but no exchange force. Right: The levels that 
would be found if there were a Coulomb interaction and an exchange force. These levels 
are in excellent agreement with the experimentally observed levels shown on the right 
in Figure 9-6. 

other has n = 2, l = 1. This can be seen by inspecting the one-electron atom radial 
probability densities of Figure 7-5. As the energy associated with the Coulomb inter-
action between the electrons is inversely proportional to their separation, the energy 
of the atom is raised less for the first set of quantum numbers, and the degeneracy 
with respect to the l quantum number (found in one-electron atoms) is removed by 
this interaction. The right side of Figure 9-7 shows the effect of the exchange force. 
In the triplet states the electrons tend to keep apart, and in the singlet state they 
tend to keep together. Therefore, the Coulomb interaction between them is relatively 
less effective in raising the energy of the atom in the triplet states, and relatively more 
effective in the singlet state. Part of the m s  degeneracy (of one-electron atoms) is also 
removed by the Coulomb interaction between the electrons, and the levels are further 
split into singlet state and triplet state levels. These are the energy levels that are ob-
served from measurements of the spectrum of the helium atom. Quantitative results 
in good agreement with the measurements can be obtained from quantum mechanics 
by adding to the energies obtained in Example 9-4 the expectation values of the 
energies due to the Coulomb repulsion between the two electrons. Antisymmetric 
total eigenfunctions, composed of one-electron atom eigenfunctions for Z = 2, are 
used to calculate the expectation values. 

It is particularly interesting to note from Figure 9-7 that there is no triplet level 
corresponding to the singlet level in the ground state of helium. It is absent because 
the antisymmetric space eigenfunction, which must be used to multiply the symmetric 
triplet spin eigenfunction, has the form 

  C4' a( 1 )C,(2) — Y'a( 1) 1//a(2)] = 0 

—60 

— —70 

>. 
'ao 

—80 
Wait, no triplet state?
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H2+ and the Born-Oppenheimer approx.

Even in the case of the H2+ molecule (2 protons, 1 electron), 
it is impossible to solve the Schrödinger equation analytically 

The Born-Oppenheimer approximation:

z

H = � ~2
2me

@2

@z2
� ~2

2M1

@2

@Z2
1

� ~2
2M2

@2

@Z2
2

+ V (z, Z1, Z2)

1 2
e

H (z, Z1, Z2) = E (z, Z1, Z2)

 (z, Z1, Z2) =  (z, {Z1, Z2}) ·  (Z1, Z2)

 (r̄e, R̄N ) =  (r̄e, {R̄N}) ·  (R̄N )



The Born-Oppenheimer approximation

 (r̄e, R̄N ) =  (r̄e, {R̄N}) ·  (R̄N )

The wave function for the electrons depend on the position of the electrons and,  
parametrically, on the position of the nuclei

For each nuclear configuration {RN}, we have a different electronic wave function

z1 2
e

z1 2
e

z1 2
e

A

B

C



The Born-Oppenheimer approximation
Electrons are much (~103-4) lighter than the nuclei, so  

for each movement of the nuclei, the electrons follows immediately

The electron-nuclei interaction is still there

Electrons are immobile on the timescale of nuclear motion

We discard the kinetic terms for the nuclei (and the mixed electron-nuclei terms) in the Hamiltonian

H = � ~2
2me

@2

@z2
� ~2

2M1

@2

@Z2
1

� ~2
2M2

@2

@Z2
2

+ V (z, Z1, Z2)

H = � ~2
2me

@2

@z2
+ V (z, {Z1, Z2})

H = � ~2
2me

@2

@z2
� e2

4⇡✏0ze�1
� e2

4⇡✏0ze�2
+

e2

4⇡✏0Z1�2



The Born-Oppenheimer approximation

H = � ~2
2me

@2

@z2
� e2

4⇡✏0ze�1
� e2

4⇡✏0ze�2
+

e2

4⇡✏0Z1�2

Comparison with the Hamiltonian for the hydrogen atom:

H = � ~2
2µ

r2 � e2

4⇡✏0 · r̄

z1 2
e

We can do this - analytically! 
(ellipsoidal instead of spherical polar coordinates)



H2+ - molecular orbitals
Solving the Schrödinger equation for H2+  

in the Born-Oppenheimer approximation leads to…

resulting solutions are called molecular orbitals and resemble atomic orbitals
but spread over both nuclei.

The ‘exact’ molecular orbitals of Hþ2 are mathematically much more
complicated than the atomic orbitals of hydrogen, and as we shall shortly
make yet another approximation, there is little point in giving their detailed
form.2 However, some of their features are very important and will occur in
other contexts.

The molecular potential energy curves vary with internuclear distance, R,
as shown in Fig. 8.5. The two lowest curves are of the greatest interest, and we
concentrate on them. The steep rise in energy as R! 0 is largely due to the
increase in the nucleus–nucleus potential energy as the two nuclei are brought
close together. At large distances, as R!1, the curves tend towards the
values typical of a hydrogen atom with the second proton a long way away.
The lowest curve passes through a minimum close to R¼2a0, and its energy
then lies about 0.20hcRH (2.7 eV) below the energy of a separated hydrogen
atom and proton. This result suggests that Hþ2 is a stable species (in the sense
of having a lower energy than its dissociation products, but not in a chemical
sense of being non-reactive), and that its bond length will be close to 2a0

(106 pm). The species is known spectroscopically: its minimum lies at 2.648 eV
and its bond length is 106 pm, in very good agreement.

The origin of the lowering of energy can be discovered by examining the
form of the wavefunctions, but we have to be circumspect. Figure 8.6 shows
the two molecular orbitals of lowest energy as contour diagrams for various
values of R. The striking difference between them is that the higher energy
orbital (denoted 2s) has an internuclear node whereas the lower energy orbital
(1s) does not. There is therefore a much greater probability of finding the
electron in the internuclear region if it is described by the wavefunction 1s
than if it is described by 2s.3 The conventional argument then runs that
because the electron can interact with both nuclei if its wavefunction is 1s,
then it is in a favourable electrostatic environment and will have a lower
energy than that of a separated hydrogen atom and proton. It is on the basis
of such a simplistic argument that chemical bond formation is commonly
associated with the accumulation of electron density in an internuclear region.

The actual interpretation of the wavefunctions is, however, a much more
delicate problem. The total energy of a molecule has contributions from
several sources, including the kinetic energy of the electron. What appears
to happen on bond formation (in Hþ2 at least) is that, as R is reduced
from a large value, the lowest energy wavefunction shrinks on to the nuclei
slightly as well as accumulating in the internuclear region. The transfer of
electron density into the internuclear region is disadvantageous, because it is
removed from close to the nuclei. However, the shrinkage of the orbitals
overcomes this disadvantage, for although a slight increase in kinetic energy
accompanies the shrinking (because the wavefunction becomes more sharply

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. A reference to their form is provided in the Further reading section.

3. The label s signifies the cylindrical symmetry of the orbital about the internuclear axis.

A s orbital has zero units of electronic orbital angular momentum about that axis, a fact used in

Section 8.4.
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resulting solutions are called molecular orbitals and resemble atomic orbitals
but spread over both nuclei.

The ‘exact’ molecular orbitals of Hþ2 are mathematically much more
complicated than the atomic orbitals of hydrogen, and as we shall shortly
make yet another approximation, there is little point in giving their detailed
form.2 However, some of their features are very important and will occur in
other contexts.

The molecular potential energy curves vary with internuclear distance, R,
as shown in Fig. 8.5. The two lowest curves are of the greatest interest, and we
concentrate on them. The steep rise in energy as R! 0 is largely due to the
increase in the nucleus–nucleus potential energy as the two nuclei are brought
close together. At large distances, as R!1, the curves tend towards the
values typical of a hydrogen atom with the second proton a long way away.
The lowest curve passes through a minimum close to R¼2a0, and its energy
then lies about 0.20hcRH (2.7 eV) below the energy of a separated hydrogen
atom and proton. This result suggests that Hþ2 is a stable species (in the sense
of having a lower energy than its dissociation products, but not in a chemical
sense of being non-reactive), and that its bond length will be close to 2a0

(106 pm). The species is known spectroscopically: its minimum lies at 2.648 eV
and its bond length is 106 pm, in very good agreement.

The origin of the lowering of energy can be discovered by examining the
form of the wavefunctions, but we have to be circumspect. Figure 8.6 shows
the two molecular orbitals of lowest energy as contour diagrams for various
values of R. The striking difference between them is that the higher energy
orbital (denoted 2s) has an internuclear node whereas the lower energy orbital
(1s) does not. There is therefore a much greater probability of finding the
electron in the internuclear region if it is described by the wavefunction 1s
than if it is described by 2s.3 The conventional argument then runs that
because the electron can interact with both nuclei if its wavefunction is 1s,
then it is in a favourable electrostatic environment and will have a lower
energy than that of a separated hydrogen atom and proton. It is on the basis
of such a simplistic argument that chemical bond formation is commonly
associated with the accumulation of electron density in an internuclear region.

The actual interpretation of the wavefunctions is, however, a much more
delicate problem. The total energy of a molecule has contributions from
several sources, including the kinetic energy of the electron. What appears
to happen on bond formation (in Hþ2 at least) is that, as R is reduced
from a large value, the lowest energy wavefunction shrinks on to the nuclei
slightly as well as accumulating in the internuclear region. The transfer of
electron density into the internuclear region is disadvantageous, because it is
removed from close to the nuclei. However, the shrinkage of the orbitals
overcomes this disadvantage, for although a slight increase in kinetic energy
accompanies the shrinking (because the wavefunction becomes more sharply
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resulting solutions are called molecular orbitals and resemble atomic orbitals
but spread over both nuclei.

The ‘exact’ molecular orbitals of Hþ2 are mathematically much more
complicated than the atomic orbitals of hydrogen, and as we shall shortly
make yet another approximation, there is little point in giving their detailed
form.2 However, some of their features are very important and will occur in
other contexts.

The molecular potential energy curves vary with internuclear distance, R,
as shown in Fig. 8.5. The two lowest curves are of the greatest interest, and we
concentrate on them. The steep rise in energy as R! 0 is largely due to the
increase in the nucleus–nucleus potential energy as the two nuclei are brought
close together. At large distances, as R!1, the curves tend towards the
values typical of a hydrogen atom with the second proton a long way away.
The lowest curve passes through a minimum close to R¼2a0, and its energy
then lies about 0.20hcRH (2.7 eV) below the energy of a separated hydrogen
atom and proton. This result suggests that Hþ2 is a stable species (in the sense
of having a lower energy than its dissociation products, but not in a chemical
sense of being non-reactive), and that its bond length will be close to 2a0

(106 pm). The species is known spectroscopically: its minimum lies at 2.648 eV
and its bond length is 106 pm, in very good agreement.

The origin of the lowering of energy can be discovered by examining the
form of the wavefunctions, but we have to be circumspect. Figure 8.6 shows
the two molecular orbitals of lowest energy as contour diagrams for various
values of R. The striking difference between them is that the higher energy
orbital (denoted 2s) has an internuclear node whereas the lower energy orbital
(1s) does not. There is therefore a much greater probability of finding the
electron in the internuclear region if it is described by the wavefunction 1s
than if it is described by 2s.3 The conventional argument then runs that
because the electron can interact with both nuclei if its wavefunction is 1s,
then it is in a favourable electrostatic environment and will have a lower
energy than that of a separated hydrogen atom and proton. It is on the basis
of such a simplistic argument that chemical bond formation is commonly
associated with the accumulation of electron density in an internuclear region.

The actual interpretation of the wavefunctions is, however, a much more
delicate problem. The total energy of a molecule has contributions from
several sources, including the kinetic energy of the electron. What appears
to happen on bond formation (in Hþ2 at least) is that, as R is reduced
from a large value, the lowest energy wavefunction shrinks on to the nuclei
slightly as well as accumulating in the internuclear region. The transfer of
electron density into the internuclear region is disadvantageous, because it is
removed from close to the nuclei. However, the shrinkage of the orbitals
overcomes this disadvantage, for although a slight increase in kinetic energy
accompanies the shrinking (because the wavefunction becomes more sharply
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2. A reference to their form is provided in the Further reading section.
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H2+ - molecular orbitals
Solving the Schrödinger equation for H2+  

in the Born-Oppenheimer approximation leads to…

resulting solutions are called molecular orbitals and resemble atomic orbitals
but spread over both nuclei.

The ‘exact’ molecular orbitals of Hþ2 are mathematically much more
complicated than the atomic orbitals of hydrogen, and as we shall shortly
make yet another approximation, there is little point in giving their detailed
form.2 However, some of their features are very important and will occur in
other contexts.

The molecular potential energy curves vary with internuclear distance, R,
as shown in Fig. 8.5. The two lowest curves are of the greatest interest, and we
concentrate on them. The steep rise in energy as R! 0 is largely due to the
increase in the nucleus–nucleus potential energy as the two nuclei are brought
close together. At large distances, as R!1, the curves tend towards the
values typical of a hydrogen atom with the second proton a long way away.
The lowest curve passes through a minimum close to R¼2a0, and its energy
then lies about 0.20hcRH (2.7 eV) below the energy of a separated hydrogen
atom and proton. This result suggests that Hþ2 is a stable species (in the sense
of having a lower energy than its dissociation products, but not in a chemical
sense of being non-reactive), and that its bond length will be close to 2a0

(106 pm). The species is known spectroscopically: its minimum lies at 2.648 eV
and its bond length is 106 pm, in very good agreement.

The origin of the lowering of energy can be discovered by examining the
form of the wavefunctions, but we have to be circumspect. Figure 8.6 shows
the two molecular orbitals of lowest energy as contour diagrams for various
values of R. The striking difference between them is that the higher energy
orbital (denoted 2s) has an internuclear node whereas the lower energy orbital
(1s) does not. There is therefore a much greater probability of finding the
electron in the internuclear region if it is described by the wavefunction 1s
than if it is described by 2s.3 The conventional argument then runs that
because the electron can interact with both nuclei if its wavefunction is 1s,
then it is in a favourable electrostatic environment and will have a lower
energy than that of a separated hydrogen atom and proton. It is on the basis
of such a simplistic argument that chemical bond formation is commonly
associated with the accumulation of electron density in an internuclear region.

The actual interpretation of the wavefunctions is, however, a much more
delicate problem. The total energy of a molecule has contributions from
several sources, including the kinetic energy of the electron. What appears
to happen on bond formation (in Hþ2 at least) is that, as R is reduced
from a large value, the lowest energy wavefunction shrinks on to the nuclei
slightly as well as accumulating in the internuclear region. The transfer of
electron density into the internuclear region is disadvantageous, because it is
removed from close to the nuclei. However, the shrinkage of the orbitals
overcomes this disadvantage, for although a slight increase in kinetic energy
accompanies the shrinking (because the wavefunction becomes more sharply
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resulting solutions are called molecular orbitals and resemble atomic orbitals
but spread over both nuclei.

The ‘exact’ molecular orbitals of Hþ2 are mathematically much more
complicated than the atomic orbitals of hydrogen, and as we shall shortly
make yet another approximation, there is little point in giving their detailed
form.2 However, some of their features are very important and will occur in
other contexts.

The molecular potential energy curves vary with internuclear distance, R,
as shown in Fig. 8.5. The two lowest curves are of the greatest interest, and we
concentrate on them. The steep rise in energy as R! 0 is largely due to the
increase in the nucleus–nucleus potential energy as the two nuclei are brought
close together. At large distances, as R!1, the curves tend towards the
values typical of a hydrogen atom with the second proton a long way away.
The lowest curve passes through a minimum close to R¼2a0, and its energy
then lies about 0.20hcRH (2.7 eV) below the energy of a separated hydrogen
atom and proton. This result suggests that Hþ2 is a stable species (in the sense
of having a lower energy than its dissociation products, but not in a chemical
sense of being non-reactive), and that its bond length will be close to 2a0

(106 pm). The species is known spectroscopically: its minimum lies at 2.648 eV
and its bond length is 106 pm, in very good agreement.

The origin of the lowering of energy can be discovered by examining the
form of the wavefunctions, but we have to be circumspect. Figure 8.6 shows
the two molecular orbitals of lowest energy as contour diagrams for various
values of R. The striking difference between them is that the higher energy
orbital (denoted 2s) has an internuclear node whereas the lower energy orbital
(1s) does not. There is therefore a much greater probability of finding the
electron in the internuclear region if it is described by the wavefunction 1s
than if it is described by 2s.3 The conventional argument then runs that
because the electron can interact with both nuclei if its wavefunction is 1s,
then it is in a favourable electrostatic environment and will have a lower
energy than that of a separated hydrogen atom and proton. It is on the basis
of such a simplistic argument that chemical bond formation is commonly
associated with the accumulation of electron density in an internuclear region.

The actual interpretation of the wavefunctions is, however, a much more
delicate problem. The total energy of a molecule has contributions from
several sources, including the kinetic energy of the electron. What appears
to happen on bond formation (in Hþ2 at least) is that, as R is reduced
from a large value, the lowest energy wavefunction shrinks on to the nuclei
slightly as well as accumulating in the internuclear region. The transfer of
electron density into the internuclear region is disadvantageous, because it is
removed from close to the nuclei. However, the shrinkage of the orbitals
overcomes this disadvantage, for although a slight increase in kinetic energy
accompanies the shrinking (because the wavefunction becomes more sharply
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2. A reference to their form is provided in the Further reading section.
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resulting solutions are called molecular orbitals and resemble atomic orbitals
but spread over both nuclei.

The ‘exact’ molecular orbitals of Hþ2 are mathematically much more
complicated than the atomic orbitals of hydrogen, and as we shall shortly
make yet another approximation, there is little point in giving their detailed
form.2 However, some of their features are very important and will occur in
other contexts.

The molecular potential energy curves vary with internuclear distance, R,
as shown in Fig. 8.5. The two lowest curves are of the greatest interest, and we
concentrate on them. The steep rise in energy as R! 0 is largely due to the
increase in the nucleus–nucleus potential energy as the two nuclei are brought
close together. At large distances, as R!1, the curves tend towards the
values typical of a hydrogen atom with the second proton a long way away.
The lowest curve passes through a minimum close to R¼2a0, and its energy
then lies about 0.20hcRH (2.7 eV) below the energy of a separated hydrogen
atom and proton. This result suggests that Hþ2 is a stable species (in the sense
of having a lower energy than its dissociation products, but not in a chemical
sense of being non-reactive), and that its bond length will be close to 2a0

(106 pm). The species is known spectroscopically: its minimum lies at 2.648 eV
and its bond length is 106 pm, in very good agreement.

The origin of the lowering of energy can be discovered by examining the
form of the wavefunctions, but we have to be circumspect. Figure 8.6 shows
the two molecular orbitals of lowest energy as contour diagrams for various
values of R. The striking difference between them is that the higher energy
orbital (denoted 2s) has an internuclear node whereas the lower energy orbital
(1s) does not. There is therefore a much greater probability of finding the
electron in the internuclear region if it is described by the wavefunction 1s
than if it is described by 2s.3 The conventional argument then runs that
because the electron can interact with both nuclei if its wavefunction is 1s,
then it is in a favourable electrostatic environment and will have a lower
energy than that of a separated hydrogen atom and proton. It is on the basis
of such a simplistic argument that chemical bond formation is commonly
associated with the accumulation of electron density in an internuclear region.

The actual interpretation of the wavefunctions is, however, a much more
delicate problem. The total energy of a molecule has contributions from
several sources, including the kinetic energy of the electron. What appears
to happen on bond formation (in Hþ2 at least) is that, as R is reduced
from a large value, the lowest energy wavefunction shrinks on to the nuclei
slightly as well as accumulating in the internuclear region. The transfer of
electron density into the internuclear region is disadvantageous, because it is
removed from close to the nuclei. However, the shrinkage of the orbitals
overcomes this disadvantage, for although a slight increase in kinetic energy
accompanies the shrinking (because the wavefunction becomes more sharply
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Molecular Orbitals (MO) 
Look at the probability density! 
• 1𝜎 ➠ Bonding orbital 
• 2𝜎 ➠ Antibonding orbital



LCAO
Actually, we cannot solve the Schrödinger equation for anything more complicated than H2+  

- even when using the Born-Oppenheimer approximation

Inspired by the H2+  MO, we can think that 
building MO is a matter of constructive/destructive interference

resulting solutions are called molecular orbitals and resemble atomic orbitals
but spread over both nuclei.

The ‘exact’ molecular orbitals of Hþ2 are mathematically much more
complicated than the atomic orbitals of hydrogen, and as we shall shortly
make yet another approximation, there is little point in giving their detailed
form.2 However, some of their features are very important and will occur in
other contexts.

The molecular potential energy curves vary with internuclear distance, R,
as shown in Fig. 8.5. The two lowest curves are of the greatest interest, and we
concentrate on them. The steep rise in energy as R! 0 is largely due to the
increase in the nucleus–nucleus potential energy as the two nuclei are brought
close together. At large distances, as R!1, the curves tend towards the
values typical of a hydrogen atom with the second proton a long way away.
The lowest curve passes through a minimum close to R¼2a0, and its energy
then lies about 0.20hcRH (2.7 eV) below the energy of a separated hydrogen
atom and proton. This result suggests that Hþ2 is a stable species (in the sense
of having a lower energy than its dissociation products, but not in a chemical
sense of being non-reactive), and that its bond length will be close to 2a0

(106 pm). The species is known spectroscopically: its minimum lies at 2.648 eV
and its bond length is 106 pm, in very good agreement.

The origin of the lowering of energy can be discovered by examining the
form of the wavefunctions, but we have to be circumspect. Figure 8.6 shows
the two molecular orbitals of lowest energy as contour diagrams for various
values of R. The striking difference between them is that the higher energy
orbital (denoted 2s) has an internuclear node whereas the lower energy orbital
(1s) does not. There is therefore a much greater probability of finding the
electron in the internuclear region if it is described by the wavefunction 1s
than if it is described by 2s.3 The conventional argument then runs that
because the electron can interact with both nuclei if its wavefunction is 1s,
then it is in a favourable electrostatic environment and will have a lower
energy than that of a separated hydrogen atom and proton. It is on the basis
of such a simplistic argument that chemical bond formation is commonly
associated with the accumulation of electron density in an internuclear region.

The actual interpretation of the wavefunctions is, however, a much more
delicate problem. The total energy of a molecule has contributions from
several sources, including the kinetic energy of the electron. What appears
to happen on bond formation (in Hþ2 at least) is that, as R is reduced
from a large value, the lowest energy wavefunction shrinks on to the nuclei
slightly as well as accumulating in the internuclear region. The transfer of
electron density into the internuclear region is disadvantageous, because it is
removed from close to the nuclei. However, the shrinkage of the orbitals
overcomes this disadvantage, for although a slight increase in kinetic energy
accompanies the shrinking (because the wavefunction becomes more sharply
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resulting solutions are called molecular orbitals and resemble atomic orbitals
but spread over both nuclei.

The ‘exact’ molecular orbitals of Hþ2 are mathematically much more
complicated than the atomic orbitals of hydrogen, and as we shall shortly
make yet another approximation, there is little point in giving their detailed
form.2 However, some of their features are very important and will occur in
other contexts.

The molecular potential energy curves vary with internuclear distance, R,
as shown in Fig. 8.5. The two lowest curves are of the greatest interest, and we
concentrate on them. The steep rise in energy as R! 0 is largely due to the
increase in the nucleus–nucleus potential energy as the two nuclei are brought
close together. At large distances, as R!1, the curves tend towards the
values typical of a hydrogen atom with the second proton a long way away.
The lowest curve passes through a minimum close to R¼2a0, and its energy
then lies about 0.20hcRH (2.7 eV) below the energy of a separated hydrogen
atom and proton. This result suggests that Hþ2 is a stable species (in the sense
of having a lower energy than its dissociation products, but not in a chemical
sense of being non-reactive), and that its bond length will be close to 2a0

(106 pm). The species is known spectroscopically: its minimum lies at 2.648 eV
and its bond length is 106 pm, in very good agreement.

The origin of the lowering of energy can be discovered by examining the
form of the wavefunctions, but we have to be circumspect. Figure 8.6 shows
the two molecular orbitals of lowest energy as contour diagrams for various
values of R. The striking difference between them is that the higher energy
orbital (denoted 2s) has an internuclear node whereas the lower energy orbital
(1s) does not. There is therefore a much greater probability of finding the
electron in the internuclear region if it is described by the wavefunction 1s
than if it is described by 2s.3 The conventional argument then runs that
because the electron can interact with both nuclei if its wavefunction is 1s,
then it is in a favourable electrostatic environment and will have a lower
energy than that of a separated hydrogen atom and proton. It is on the basis
of such a simplistic argument that chemical bond formation is commonly
associated with the accumulation of electron density in an internuclear region.

The actual interpretation of the wavefunctions is, however, a much more
delicate problem. The total energy of a molecule has contributions from
several sources, including the kinetic energy of the electron. What appears
to happen on bond formation (in Hþ2 at least) is that, as R is reduced
from a large value, the lowest energy wavefunction shrinks on to the nuclei
slightly as well as accumulating in the internuclear region. The transfer of
electron density into the internuclear region is disadvantageous, because it is
removed from close to the nuclei. However, the shrinkage of the orbitals
overcomes this disadvantage, for although a slight increase in kinetic energy
accompanies the shrinking (because the wavefunction becomes more sharply
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In the case of H2+  constructive/destructive interference between  
the two atomic (𝜎) orbitals of the hydrogen atom
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Linear Combination of Atomic Orbitals 
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resulting solutions are called molecular orbitals and resemble atomic orbitals
but spread over both nuclei.

The ‘exact’ molecular orbitals of Hþ2 are mathematically much more
complicated than the atomic orbitals of hydrogen, and as we shall shortly
make yet another approximation, there is little point in giving their detailed
form.2 However, some of their features are very important and will occur in
other contexts.

The molecular potential energy curves vary with internuclear distance, R,
as shown in Fig. 8.5. The two lowest curves are of the greatest interest, and we
concentrate on them. The steep rise in energy as R! 0 is largely due to the
increase in the nucleus–nucleus potential energy as the two nuclei are brought
close together. At large distances, as R!1, the curves tend towards the
values typical of a hydrogen atom with the second proton a long way away.
The lowest curve passes through a minimum close to R¼2a0, and its energy
then lies about 0.20hcRH (2.7 eV) below the energy of a separated hydrogen
atom and proton. This result suggests that Hþ2 is a stable species (in the sense
of having a lower energy than its dissociation products, but not in a chemical
sense of being non-reactive), and that its bond length will be close to 2a0

(106 pm). The species is known spectroscopically: its minimum lies at 2.648 eV
and its bond length is 106 pm, in very good agreement.

The origin of the lowering of energy can be discovered by examining the
form of the wavefunctions, but we have to be circumspect. Figure 8.6 shows
the two molecular orbitals of lowest energy as contour diagrams for various
values of R. The striking difference between them is that the higher energy
orbital (denoted 2s) has an internuclear node whereas the lower energy orbital
(1s) does not. There is therefore a much greater probability of finding the
electron in the internuclear region if it is described by the wavefunction 1s
than if it is described by 2s.3 The conventional argument then runs that
because the electron can interact with both nuclei if its wavefunction is 1s,
then it is in a favourable electrostatic environment and will have a lower
energy than that of a separated hydrogen atom and proton. It is on the basis
of such a simplistic argument that chemical bond formation is commonly
associated with the accumulation of electron density in an internuclear region.

The actual interpretation of the wavefunctions is, however, a much more
delicate problem. The total energy of a molecule has contributions from
several sources, including the kinetic energy of the electron. What appears
to happen on bond formation (in Hþ2 at least) is that, as R is reduced
from a large value, the lowest energy wavefunction shrinks on to the nuclei
slightly as well as accumulating in the internuclear region. The transfer of
electron density into the internuclear region is disadvantageous, because it is
removed from close to the nuclei. However, the shrinkage of the orbitals
overcomes this disadvantage, for although a slight increase in kinetic energy
accompanies the shrinking (because the wavefunction becomes more sharply
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resulting solutions are called molecular orbitals and resemble atomic orbitals
but spread over both nuclei.

The ‘exact’ molecular orbitals of Hþ2 are mathematically much more
complicated than the atomic orbitals of hydrogen, and as we shall shortly
make yet another approximation, there is little point in giving their detailed
form.2 However, some of their features are very important and will occur in
other contexts.

The molecular potential energy curves vary with internuclear distance, R,
as shown in Fig. 8.5. The two lowest curves are of the greatest interest, and we
concentrate on them. The steep rise in energy as R! 0 is largely due to the
increase in the nucleus–nucleus potential energy as the two nuclei are brought
close together. At large distances, as R!1, the curves tend towards the
values typical of a hydrogen atom with the second proton a long way away.
The lowest curve passes through a minimum close to R¼2a0, and its energy
then lies about 0.20hcRH (2.7 eV) below the energy of a separated hydrogen
atom and proton. This result suggests that Hþ2 is a stable species (in the sense
of having a lower energy than its dissociation products, but not in a chemical
sense of being non-reactive), and that its bond length will be close to 2a0

(106 pm). The species is known spectroscopically: its minimum lies at 2.648 eV
and its bond length is 106 pm, in very good agreement.

The origin of the lowering of energy can be discovered by examining the
form of the wavefunctions, but we have to be circumspect. Figure 8.6 shows
the two molecular orbitals of lowest energy as contour diagrams for various
values of R. The striking difference between them is that the higher energy
orbital (denoted 2s) has an internuclear node whereas the lower energy orbital
(1s) does not. There is therefore a much greater probability of finding the
electron in the internuclear region if it is described by the wavefunction 1s
than if it is described by 2s.3 The conventional argument then runs that
because the electron can interact with both nuclei if its wavefunction is 1s,
then it is in a favourable electrostatic environment and will have a lower
energy than that of a separated hydrogen atom and proton. It is on the basis
of such a simplistic argument that chemical bond formation is commonly
associated with the accumulation of electron density in an internuclear region.

The actual interpretation of the wavefunctions is, however, a much more
delicate problem. The total energy of a molecule has contributions from
several sources, including the kinetic energy of the electron. What appears
to happen on bond formation (in Hþ2 at least) is that, as R is reduced
from a large value, the lowest energy wavefunction shrinks on to the nuclei
slightly as well as accumulating in the internuclear region. The transfer of
electron density into the internuclear region is disadvantageous, because it is
removed from close to the nuclei. However, the shrinkage of the orbitals
overcomes this disadvantage, for although a slight increase in kinetic energy
accompanies the shrinking (because the wavefunction becomes more sharply
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Symmetry 
Are the MO invariant upon  

inversion of electronic coordinates? 
• 1𝜎 is! g (gerade) 
• 2𝜎 is not! u (ungerade)



LCAO diagrams
The hydrogen molecule

1s [H atom] 1s [H atom]

1𝜎 [H2 molecule]

1𝜎* (2𝜎) [H2 molecule]

The helium molecule

1s [He atom] 1s [He atom]

1𝜎 [He2 molecule]

1𝜎* (2𝜎) [He2 molecule]



Bond order
Bond order:

N. of bonding e� N. of antibonding e

2

The higher the bond order (BO), the stronger the bond [length, enthalpy] 

• Hydrogen molecule:  BO=1 
• Helium molecule: BO=0 



LCAO diagrams

LCAO how to: 
1.  Find the valence electrons for each atom in the molecule 
2.  Homo- vs hetero- nuclear molecule (the more electronegative atom will be 

placed lower on the diagram) 
3. Build the MOs, keeping in mind that: 

• More nodes = higher MOs 
• Sigma orbitals are stronger than pi bonds 
•  Antibonding MOs are higher in energy than bonding MOs 
•  Constructive overlap = fewer nodes = more stable (less energetic) 
•  Destructive overlap = more nodes = less stable (more energetic) 

4. Double check: the number of individual atomic orbitals should equal the 
number of MOs



LCAO diagrams
The nitrogen molecule

Electronic configuration of the nitrogen atom: 
[He] 2s22p3

2s

1𝜎g

2𝜎*u

2px

2s

2py
2pz

2px
2py
2pz

1𝜋u

3𝜎g

2𝜋*g

4𝜎*u

Bond order?



Molecular orbitals
The HF molecule

Electronic configuration of the fluorine atom: 
[He] 2s22p5

The 𝜎 atomic orbital of F cannot interact with the 𝜎 atomic orbital of H 
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Molecular orbitals
The HF molecule

Electronic configuration of the fluorine atom: 
[He] 2s22p5

The 𝜎 atomic orbital of F cannot interact with the 𝜎 atomic orbital of H 



Coffee!



Intra- & Inter- molecular interactions

Chemical bonds 
You have to do chemistry to break/form them

Typically much weaker 
No need to do chemistry, electrostatic is usually enough…



Covalent bond
Covalent bonds are the realm of LCAO

Non polar

Polar



Ionic bond

nacl_2.mp4

Chemistry in solution



Metallic bond



Ranking [?]



Intermolecular forces
Intermolecular forces according to Jacob Israelachvili,  

commenting upon a corollary of the Hellmann-Feynman theorem… 

“[…] all intermolecular forces are essentially electrostatic in origin […] once the spatial distribution of 
the electron clouds has been determined by solving the Schrödinger equation, the intermolecular 

forces may be calculated on the basis of straightforward classical electrostatic”



Intermolecular forces

A rather subjective list: 
• Van der Waals forces: 

- Keesom forces (permanent dipole-permanent dipole) 
- Debye forces (permanent dipole-induced dipole) 
- London dispersion forces (fluctuating dipole-induced dipole) 

• Ion-(induced or permanent…) dipole 
• Hydrogen bonding 
• Halogen bonding […]



Molecular dipoles
(electric) Dipole moment

�q +q

µ̄ = q · d̄

d̄

Beware the sign! 
• Chemists: from + to - 
• Physicists: from - to +whole of the profiles reported in Fig. 3
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a) b)

Collapse onset

Figure 5: a) Average angle ✓Z of the dipole moment (of either water molecules, µH2O or cholesterol
hydroxyl groups OHCHL) with respect to the z-axis normal to the water-cholesterol interface - as
a function of surface area per molecule. b) Schematics of the relative orientation of the dipole
moments of water molecules and cholesterol hydroxyl groups. Note that in both cases the dipole
moments go from positive to negative charge (chemistry convention).

In Fig. 6 is shown the average angle ✓Z formed by the molecular axis C17 � C3 and

C25�C20 (see inset of Fig. 6) of the cholesterol molecules and the z-axis normal to the water-

cholesterol interface - as a function of surface area per molecule. Substantial straightening of

the cholesterol molecules can be observed as we approach the onset of the collapse, similarly

to the increase in the ordering of water molecules. The two molecular axis seem to display

similar degrees of order upon the change in surface area per molecule. Note that the variation

in terms of ✓Z is much more pronounced for the cholesterol molecules than for water (and

even more if compared to the tiny variations displayed by the -OH groups), as can be seen

by comparing Fig. 5 and Fig. 6. This can possibly contribute to explain why the SFG signal

is so strong for cholesterol as opposed to the relatively weak variations within the water SVG
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Molecular dipoles
Molecular dipoles 

• Permanent dipoles 
• Induced dipoles 
• Fluctuating dipoles

Permanent dipole

H CL �
��+

µ̄

11
Keesom forces



Molecular dipoles
Molecular dipoles 

• Permanent dipoles 
• Induced dipoles 
• Fluctuating dipoles

Induced dipole

Spherical atom, or 
molecule with no net dipole moment

+
Charged 

ion

+
Charged 

ion

�+��

µ̄ Induced dipole moment



Molecular dipoles
Molecular dipoles 

• Permanent dipoles 
• Induced dipoles 
• Fluctuating dipoles

Fluctuating dipole

Spherical atom, or 
molecule with no net dipole moment

�+��

µ̄ Fluctuating dipole

The strength of these dipoles depends upon the polarizability of the electrons involved 
i.e. how electrons respond to an electric field

How many electrons? 
How tightly are they bound to the nuclei?

They have a finite lifetime
London dispersion forces



The case of methanol
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Something



Electrostatic interactions
The electrostatic potential energy between two charges q1 and q2 is:

d̄

q1 q2

E
Electrostatic

(d̄) = ±q
1

· q
2

4⇡✏
0

d̄

F
Electrostatic

(d̄) = �rE
Electrostatic

(d̄) = ± q
1

· q
2

4⇡✏
0

d̄2

−1

−0.5

 0

 0.5

 1

 0  1  2  3  4  5

E(
r)

distance (r, or d) [Å]

−1/r
−1/r6
1/r12



Intra- & Inter- molecular forces
A long-standing challenge for molecular simulations

ab initio vs classical methods

The energy (and thus the forces) of the system depends on both intra- and inter- molecular interactions

How do we represent intra- and inter- molecular interactions?

The case of water…

0. Keep it simple:



The case of water

1. Molecules cannot overlap

Hard spheres [colloidal particles]

V(ri,j)

ri,j

ri,j

Gasser, U., et al. (2001).  
Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization.  

Science 292, 258–262.



The case of water
2. Repulsive and attractive terms

Lennard-Jones potential [e.g. metallic liquids]

VLJ(r) = 4✏

⇣�
r

⌘12
�

⇣�
r

⌘6
�

−0.4

−0.2

 0

 0.2

 0.4

 0  0.5  1  1.5  2  2.5  3

V L
J(

r)

r

−1/r6
1/r12

LJ



The case of water
3. Back to the water molecule - Bond and angles 
4. What about the dipole moment? - Point charges 
5. Liquid water - LJ + point charges 
6. Polarisable liquid water - LJ + point charges that can vary in time 
7. Proton transfer in water - DFT (or machine-learning based potentials) 
8. Nuclear quantum effects in water - Path Integral simulations 
9. Heterogeneous ice nucleation - Different interactions for different components…



Outro

Learning Objectives 
By the end of this lectures you should…  

• … be familiar with the basic concepts of quantum mechanics 
• … be able to deal with a few model systems (free particle, particle in a 

box, hydrogen atom…) 
• … be confident about the notion of chemical bonds and intermolecular 

interactions
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The workshop

Pen, paper & calculator 
14:00, MOAC seminar room



Lunch


