
L15-20: 
Ab initio Molecular Dynamics

Electronic Structure Methods for 
Material Modelling 
!

• 1.L15 - Reminder of Statistical Mechanics 
• 2.L16 - Ab initio Molecular Dynamics  
• 3.L17 - Ensembles medley: NVT, NPT, 𝝁VT  
• 4.L18 - Enhanced Sampling Methods Vol. I 
• 5.L19 - Enhanced Sampling Methods Vol. II  
• 6.L20 - Surfaces and interfaces  
• 7.L21 - Disordered systems 



Practical Info

• Contact: g.sosso@ucl.ac.uk  
• Lecture slides (including The Hidden Math and What’s Next): on Moodle  
• Digging a little deeper… 
- M. Tuckermann, Statistical Mechanics: Theory and Molecular Simulation (L15,L17) 
- D. Frenkel. & B. Smith, Understanding Molecular simulations (L15,L17-19) 
- M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (L15,L21) 
- R. Martin (no, not THAT guy) Electronic structure: Basic Theory and Practical Methods (L16) 
- T. Kühne, Ab initio Molecular Dynamics (http://arxiv.org/abs/1201.5945v2) (L16) 
- C. Chipot & A. Pohorille, Free Energy Calculations: Theory and Applications in Chemistry and 

Biology (L18-19) 
- H. Lüth, Solid Surfaces, Interfaces and Thin Films (L20) 
- K. Binder, Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics 

(L21) 
- R. Zallen, The Physics of Amorphous Solids (L21)
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(Extremely compact) reminder of  
Statistical Mechanics

Electronic Structure Methods for Materials Modelling

• Learning Outcomes  
• The concept of phase space 
• The origin and the role of the partition function 
• How do we switch from classical to quantum statistical mechanics



Outline

• Why MD? 
• Classical statistical mechanics  

• Phase space 
• Classical mechanics 
• Liouville equation 
• The microcanonical ensemble 

• Introducing MD  
• Ergodic principle 
• Integrating the equations of motion 
• Initial conditions 

• The quantum case 
• Quantum statistical mechanics 
• The Born-Oppenheimer approximation

• Next: how do we deal with the electrons?



Why (ab initio) Molecular Dynamics? 
Computer experiments 

(ab initio) molecular dynamics allows the investigation of: !
• Dynamical properties 
• Properties evaluated at e.g. finite temperature 
• Characterization of liquid phases 
• Non equilibrium problems, e.g. thermal transport 
• Chemical reactions, phase transitions

Up to now in this course: static properties at 0 K

Disclaimer: some of these can be studied 
by (quantum) Monte Carlo simulations 

We want to obtain macroscopic properties of the system of interest at certain conditions 
(maybe not accessible experimentally), providing at the same time microscopic insight

J. Phys.: Condens. Matter 21 (2009) 095410 G C Sosso et al
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Figure 1. Structure of Sb2Te3 in the conventional hexagonal
supercell (three formula units). (a) Side view. (b) Top view along the
hexagonal c axis. The three atoms independent by symmetry are
labeled.

Table 1. Theoretical and experimental lattice parameters, a and c
(Å), of the conventional hexagonal cell, parameters x and y which
assign the position of atoms independent by symmetry,
Te2 = (0, 0, x) and Sb = (0, 0, y), in crystallographic units and
bond lengths (Å). Experimental data are from [10]. Previous
theoretical PBE results from [11] and [12].

This work
This work
(exp. cell)

Theorya

[11]
Theoryb

[12] Exp. [10]

a 4.316 4.35 4.44 4.264
c 31.037 30.844 30.29 30.458
x 0.785 0.788 0.7864 0.791 0.7872
y 0.397 0.398 0.3977 0.400 0.3988
Te1–Sb 3.178 3.156 3.201 3.263 3.168
Sb–Te2 3.020 3.005 3.037 3.102 2.979
Te2–Te2′ 3.891 3.695 3.833 3.626 3.736

a Pseudopotential, plane wave calculation [11].
b All-electron, full potential, linearized augmented plane wave
calculation [12].

experimental data [10] and previous theoretical works [11, 12].
Theoretical bond lengths are reported both at the theoretical
and at the experimental equilibrium lattice parameters. The
calculated bulk modulus is 22 GPa.

The agreement with experimental data is overall
acceptable, but for a misfit in the Te–Te bond length which is
much larger than the usual errors within DFT-GGA. The bond

(a)

(b)

Figure 2. Electronic density of states (DOS) of Sb2Te3 calculated on
a 20 × 20 × 20 mesh in the irreducible Brillouin zone. Each
electronic level is broadening with a Gaussian function 0.09 eV wide.
(a) Total DOS. (b) DOS projected on s and p orbitals of Te and Sb
atoms. The zero of energy is the top of the valence band.

lengths are brought to a better agreement with experiments
by fixing the lattice parameters to the experimental values.
The inclusion of semicore d states of Te does not lead to
improvements in the theoretical equilibrium geometry, the
structural parameters of table 1 turning out to be a = 4.338 Å,
c = 31.338 Å, x = 0.785, y = 0.397, d(Te1–Sb) = 3.196 Å,
d(Sb–Te2) = 3.033 Å and d(Te2–Te2′) = 3.949 Å. This
misfit can be ascribed to deficiencies of most common DFT-
GGA functionals in describing weak bonds such as the Te–Te
bond in this system.

The calculated electronic density of states of Sb2Te3 at
the theoretical equilibrium volume is reported in figure 2.
The system is insulating, with a small direct bandgap at the
! point of 0.15 eV. Inclusion of the spin–orbit interaction,
here neglected, changes several details of the band structure,
causing the bandgap to become indirect and to widen to
0.278 eV [11] (experimental value 0.28 [13]).

3.2. Vibrational properties

Phonons at the ! point are classified according to the
irreducible representations of the point group D3d as

! = 2(A1g + Eg) + 3(Eu + A2u). (1)

One Eu and one A2u are acoustic modes. The modes
which display a dipole moment (u-modes) couple to the inner

2

e.g. the electronic density of 
state of an ideal crystalline 

structure at 0 K



Connecting Macro and Micro 
The concept of ensemble 

No electronic structure method is (will ever be?) able to deal with the 
macroscopic (1023 particles) world

The workaround (Boltzmann ~1800, Gibbs ~1900):  
The macroscopic properties of a macroscopic system  

are not that sensitive to its exact microscopic (101-106 particles) details

The concept of ensemble !
• A collection of microscopic systems described by the same set of microscopic interactions and sharing a 

common set of macroscopic properties 
• Each of these microscopic systems evolves in time according to certain microscopic laws of motion from a 

different initial condition, such as at any time each system has a unique microscopic state.



Connecting Macro and Micro 
Ensamble averages 

P =
1

Z

ZX

�=1

p(x�,t=t⇤) ⌘ hpi

(Under certain conditions) we are allowed to estimate a macroscopic property P of the actual system by 
performing an average of the microscopic property p over all the microscopic systems of the ensemble  !!!

Ensemble average, <p>

If your favourite electronic structure method can deal with these microscopic systems,  
you have decomposed your unfeasible macroscopic problem into  

an intrinsically parallel problem made of a set of Z microscopic systems

Thus, in classical ensemble theory:

Microscopic state of the system



Microscopic states 
The concept of phase space 

x�,t=t⇤ = (r�,t=t⇤,1, . . . , r�,t=t⇤,N ,p�,t=t⇤,1, . . . ,p�,t=t⇤,N )

These 6N numbers define a phase space vector, which lives in a 6N-dimensional space called phase space.

The microscopic state of a system containing N particles at time t=t* is given by 6N numbers:

Remember: this is classical statistical mechanics!

The system evolves according to Newton’s equations of motion

Fi(r1, . . . , rN ,pi) = miai =
@pi

@t

Positions Momenta = mass m  times velocity v



Classical Mechanics 
Lagarangian formulation 

If 
• The forces acting on the system are conservative: !!
• We can define the kinetic energy of the system as: 

Fi(r1, . . . , rN ) = �riU(r1, . . . , rN )

K(ṙ1, . . . , ṙN ) =
1

2

NX

i=1

miṙ
2
i

we can define a Lagrangian:

L(r1, . . . , rN , ṙ1, . . . , ṙN ) = K(ṙ1, . . . , ṙN )� U(r1, . . . , rN )

which generates Newton’s equation of motion via the Eulero-Lagrange equation:

d

dt

✓
@L
@ṙi

◆
� @L

@ri
= 0

Potential Energy

The Hidden Math - on Moodle



Classical Mechanics 
Hamiltonian formulation 

Recall the Legendre transform:

f̃(s) = f(x(s))� sx(s), s = f

0(x)

pi =
@L
@ṙi

f̃(s1, . . . , sn) = f(x1(s1, . . . , sn), . . . , xn(s1, . . . , sn))�
nX

i=1

sixi(s1, . . . , sn)

As

If you take the Legendre transform of the Lagrangian, you end up with the Hamiltonian of the system:

H(r1, . . . , rN ,p1, . . . ,pN ) =
NX

i=1

p2
i

2mi
+ U(r1, . . . , rN )

The Hamiltonian formulation of classical mechanics is quite useful as well… 
How do we get it from the Lagrangian formulation?



Liouville theorem 
How do we move in the phase space? 

Think about this question: the Hamiltonian (or the Lagrangian…) of the system tells 
you about the motion of each individual member of the ensemble 

What about the time evolution of the ensemble as a whole? 
Well, if the system evolves in time according to Hamilton’s equation…

Liouville theorem

dxt = dx0

The phase space volume is conserved in time

Imagine your ensemble at t=0 as an (hyper)cube in the 6N phase space 

Liouville theorem says that no matter the shape of the region of the 
phase space occupied by the ensemble, the volume of that region 

does not change

The time evolution of each system within the ensemble (Hamilton 
equations) will lead to a distortion of this hypercube in time

Nor does the number of systems ➙ the density stays the same

r

p

t=0

t=t1

t=t2



Liouville theorem 
Practical meaning? 

Note the analogy with an incompressible fluid 

vH(vr,vp)Given a velocity field v

r · v = 0
And in fact, the divergence of an Hamiltonian field is zero

r · vH(vir, v
i
p) = 0

(Equilibrium) ensemble averages can be evaluated at any point in time

P =
1

Z

ZX

�=1

p(x�,t=t⇤) ⌘
1

Z

ZX

�=1

p(x�,t=t†)

One of the most important consequences of Liouville theorem:



Liouville equation 
The ensemble distribution function 

Phase space

All the possible micro states 
available to a system of N 

particles

Ensemble: collection of 
states consistent with a set 
of macroscopic variables

How exactly the micro states of the ensemble are distributed within the phase space?

The ensemble distribution function

f(x, t)

r

p

e.g. energy



Liouville equation 
Time evolution of the ensemble distribution 

Let’s define a sort of phase space velocity

ẋ =

✓
@H
@p1

, . . . ,

@H
@p3N

,�@H
@q1

, . . . ,� @H
@q3N

◆

The ensemble distribution function and the phase space velocity are connected by the Liouville equation

@

@t

f(x, t) = �ẋ ·rf(x, t)

It tell us how the ensemble evolves in time - and more!



Liouville equation 
Equilibrium solutions 

Recall the connection between macro and micro

P = hp(x)i =
Z

f(x, t) · p(x) dxP =
1

Z

ZX

�=1

p(x�,t=t⇤) ⌘ hpi or

For an equilibrium ensemble average, though:

@

@t

f(x, t) = 0

And the Liouville equation becomes:

ẋ ·rf(x, t) = 0
At this stage, basically any function of the Hamiltonian is a solution of the equilibrium Liouville equation

f(x) / F(H(x))



Liouville equation 
The origin of the partition function 

We cannot say much about the specific form of the Liouville equilibrium equation  
without knowing some more about the ensemble

However, we do know that we have to normalize the solution, whatever that is
Z

f(x, t) dx = 1

f(x) =
1

ZF(H(x))

where Z is the partition function, defined as

Z =

Z
F(H(x)) dx

Thus



Ensemble averages 
The central role of the partition function 

Thanks to the partition function, we can now compute any equilibrium observable as

P = hp(x)i = 1

Z
Z

p(x)F(H(x)) dx

Remember: this holds because of Liouville theorem

dxt = dx0

which implies that

f(xt)dxt = f(x0)dx0



The microcanonical ensemble 
Focusing on the “right” energies 

Simplest option? The microcanonical ensemble (NVE)  
Number of particles, volume of the system and its total energy are conserved.  

Imagine an isolated box of volume V containing N particles, unable to exchange energy E with the external world

We can choose the ensemble we want, in order to mimic the experimental conditions we are interested in 

Now we have the tools we need!

N particles - constant

Volume V - constant

Total Energy E - conserved



The microcanonical ensemble 
Focusing on the “right” energies 

Let us solve the equilibrium Liouville equation

This time, on top of the generic solution

We know that F must be restricted to those states for which 

The simplest option is the the Dirac delta function, so that we can write the solution as

ẋ ·rf(x, t) = 0

f(x) / F(H(x))

H(x) = E

F(H(x)) = �(H(x)� E)

In the NVE ensemble, the phase distribution 
function lies entirely on the hyper surface 

defined by the Hamiltonian

r

p

f(x, t) ! E = H(x)



The microcanonical ensemble 
NVE partition function 

Assumption of equal a prior probability:  
all the points of the space phase on that hyper surface have the same probability,  

(while any point outside has zero probability)

How much phase space is available to the system?  
That is, how extended is that hyper surface?  

Or again, what is the partition function of the NVE ensemble?

Recall: Z =

Z
F(H(x)) dx Z = ⌦(NV E) = A ·

Z
�(H(x)� E)dx

A =
E0

N !h3N

h3N is the volume of an hypercube in the phase space

N! is quantum mechanics!  
Over counting of  indistinguishable states/particles

E0 is irrelevant but makes the partition function dimensionless



The microcanonical ensemble 
Entropy 

Basically, the partition function in the NVE is just the sum of the states with the right energy.  
As such, this ensemble is dominated by entropy, as demonstrated by the famous  

Boltzmann formula (~1870, then Planck):

Macroscopic entropy Microscopic partition function

Boltzmann (well, actually Planck…) constant 
New value (2013, impossibly accurate measurement of the speed of sound in a 

monoatomic gas) could be 1.38065156(98)×10−23 J⋅K−1

S(N,V,E) = kB ln⌦(N,V,E)



Ergodic Hyoptheis:  
A system, given an infinite amount of time, will cover the entire constant energy hypersurface

Introducing MD 
Ergodic principle 

Again, we are interested in macroscopic equilibrium properties, and we now we know how to compute:

P = hp(x)i = 1

Z
Z

p(x)F(H(x)) dx

In NVE

hp(x)i =
R
p(x)�(H(x)� E)dxR
�(H(x)� E)dx

However, in MD we evolve the equation of motion of the system, so that we perform time averages, not 
ensemble averages! Are the two equivalent? Yes, if the ergodic principle holds (for a long enough simulation 

time, the time average does not depend on the initial conditions):

hp(x)i = lim
t!1

1

t

Z t

0
p(x�,t=t⇤)dt

Not every system is ergodic!



MD in practice 
Solving Newton’s equations 

Still, with a good integrator the discrete trajectory is close enough to the analytical one: 
divergent, yes, but still sampling the same NVE ensemble

We cannot generate the actual trajectory of the system  
We can, however, integrate numerically the equations of motion

Fi(r1, . . . , rN ,pi) = miai =
@pi

@t

In classical MD, all we have to do is to integrate Newton’s equations of motion:

In ab initio MD,  
this is just half of the story…

Chaotic trajectories:  
exponential divergence with respect to the initial conditions (positions and momenta)

r

p

Ω(NVE)

Traj 1
Traj 2

• Ergodic system 
• Good integrator 
• Reasonable time step 
• Long enough MD run

r

p

Ω(NVE)

Traj 1

Traj 2



MD in practice 
Symplectic integrators 

Good integrators 
• Time reversible, consistently  with Newton’s equations 
• Long time energy conservation 

Symplectic algorithms:  
they conserve the phase space measure 

That is: A symplectic integrator conserves the 
area/volume of the phase space  

delimited by an ensemble of systems.

Ideal
r

p

r

p

r

p

Symplectic
Non Symplectic

e.g. 8 harmonic oscillator in time…

Look at:  
• Energy conservation 
• Consistency with respect to Liouville theorem



MD in practice 
The Velocity Verlet algorithm 

One option (widely used within many many flavours of MD and usually rather robust): 
The Velocity Verlet (VV) algorithm

The goal:  
We know positions and velocities (r,v) at time t 

How do we get r & v at time t+\Delta t? 

We put together two Taylor expansions (2nd order): 
r(t+\Delta t) centered in t  

+ 
r(t) centered in t+\Delta t

f(x) =
1X

n=0

1

n!

@

n

f

@x

n

����
x=x0

(x� x0)
n

Generic Taylor expansion of a function f(x) centered in x0



MD in practice 
VV derivation 

f(x) = ri(t+�t) and x0 = t

Get the time evolution of the position via a first Taylor expansion (2nd order):

ri(t+�t) ⇡ ri(t) + vi(t)�t+ Fi(t)
�t2

2mi

Get back in time via a second Taylor expansion (2nd order as well): 

f(x) = ri(t) and x0 = t+�t

ri(t) ⇡ ri(t+�t)� vi(t+�t)�t+ Fi(t+�t)
�t2

2mi

a.

b.



MD in practice 
VV derivation 

vi(t+�t) ⇡ vi(t) + [Fi(t) + Fi(t+�t)]
�t

2mi

Get the time evolution of the velocities by substituting a. in b.

The VV algorithm evolves positions and velocities simultaneously

ri(t+�t) ⇡ ri(t) + vi(t)�t+ Fi(t)
�t2

2mi

vi(t+�t) ⇡ vi(t) + [Fi(t) + Fi(t+�t)]
�t

2mi

The crucial quantity: 𝜟 t, to be tested carefully. The choice is often a compromise between computational 
efficiency and good conservation of the conserved quantities (total energy and momenta for NVE)

Remember: equilibrium ensemble averages mean that the system has to be equilibrated!



MD in practice 
Initial conditions 

We need to specify coordinates and momenta (positions and velocities)

Positions at t=0:  
Experimental data, physical intuition, random coordinates, periodic lattice at high temperature…

Equipartition theorem (classical manybody system): 
1/2 kBT for each quadratic term in the Hamiltonian

H(r1, . . . , rN ,p1, . . . ,pN ) =
NX

i=1

p2
i

2mi
+ U(r1, . . . , rN )

Velocities at t=0 determine the 
initial temperature 

Ki = 3 · 1
2
kBT T =

NX

i=1

miv2i
3NkB

Single particle Whole system



MD in practice 
Initial conditions 

How do we pick up the initial momenta? 
• Random numbers plus shifting such as the total momentum is zero and then 

rescaling to adjust the kinetic energy  
• Draw them randomly from a Gaussian (Maxwell-Boltzmann velocity distribution) 

f(v) =

✓
m

2⇡kBT

◆3/2

exp

✓
�m|v|2

2kBT

◆
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f(v
) o

r f
(|v

|))

v or |v| [arb. units]

f(v)
f(|v|)

Note the difference between 
f(v) and f(|v|)



MD in practice 
Class vs ab initio 

So far, so good. 
But wait. How do we get the forces? We have to know the potential!

Fi(r1, . . . , rN ) = �riU(r1, . . . , rN )

Classical MD 
We write - somehow - an analytical expression for 

the interatomic potential.

ab initio MD 
We get the forces by electronic structure calculations

Which one do I choose? 
The subtle compromise between computational speed and physical accuracy

* Only phenomena whose characteristic correlation length is much smaller 
than the simulation box can be simulated, unless a finite-size scaling is 
applicable 

* Only processes whose typical relaxation time is significantly smaller than 
the simulation time can be studied 



AIMD 
Quantum statistical mechanics?! 

We have derived most of the statistical mechanics we need for MD within classical mechanics

Electronic structure methods  deal with quantum mechanics

Luckily 
• For (almost…) every concept of classical statistical mechanics one can find the quantum equivalent 
• Atomic nuclei are still treated as classical particles 



Quantum Statistical Mechanics 
State vectors 

Phase space vector -> Quantum state vector

x(r,p) ! | i
It’s a (column) vector of Ns complex numbers,  

where Ns is the total number of states in which the system can be observed

Lives in Hilbert space, which counterpart is the dual space (where the bra lives)

(Classical) Phase space Quantum phase space



Quantum Statistical Mechanics 
Operators 

Classical observables become operators (matrices…) that act on the quantum state vectors

P ! P̂
We can “promote” the classical position and momentum operators to the correspondent quantum operators

x ! x̂ and p ! p̂

So that the quantum Hamiltonian for a generic system reads:

Ĥ(x̂, p̂) =
p̂

2

2m
+ Û(x̂)



Quantum Statistical Mechanics 
Quantum ensemble averages 

As in classical mechanics, the (quantum) Hamiltonian of the system governs its time evolution
Time dependent, non relativistic Schröedinger equation

i~ @
@t

| (t)i = Ĥ| (t)i
We now have - almost - all we need to deal with quantum ensembles: 

Collections of Z quantum systems , each with a unique state vector corresponding to a unique microscopic state

Our macroscopic property is now the expectation value of a certain operator 
We write this formulation as a - quantum - ensemble average:

hP̂i = 1

Z

ZX

�=1

h (�)|P̂| (�)i

| �i,� = 1, . . . ,Z| 1i

| 2i

| 3i

| Zi



Quantum Statistical Mechanics 
Density Matrix 

We build something similar. 
Let’s start by expanding the state vector into a certain basis - sounds familiar?

| (�)i =
X

k

C(�)
k |�(�)i

What about Liouville equation? Will it hold in here as well? 
And what do we use in place of the phase distribution function?

Substitute the expansion in to the average

hP̂i =
X

k,l

✓
1

ZC(�)
l C(�)⇤

k

◆
h�k|P̂|�li



Quantum Statistical Mechanics 
Density Matrix 

⇢̂ =
ZX

�=1

| (�)ih (�)|

⇢lk =
ZX

�=1

C(�)
l C(�)⇤

k

We can define the matrix elements

of the so called density matrix:

A central quantity in ab initio MD



Quantum Statistical Mechanics 
Time evolution of the Density Marix 

A time dependent density matrix means time dependent  state vectors:

In the Schröedinger picture, observables are time independent. We evolve the state vectors in time as: 

⇢̂(t) =
ZX

�=1

| (�)(t)ih (�)(t)|

| (t)i = Û | (0)i | (t)i = e�
i
~ Ĥt| (0)i

Now, if you take the time derivative, you end up with the Liouville-von Neumann equation:

@

@t
⇢̂ =

1

i~ [Ĥ, ⇢̂]

also known as the quantum Liouville equation 
It tells you how the quantum system explore in time the quantum phase space - and more!



Quantum Statistical Mechanics 
Equilibrium solutions of the quantum Liouville Eq. 

Exactly as we did in the classical case, we consider equilibrium ensembles. Thus: 

@

@t
⇢̂ = 0

⇢̂NV E =

X

m

Pm|EmihEm|, with Pm = � if E < Em < E +�E and 0 otherwise

[Ĥ, ⇢̂] = 0

These two commute, so they share the same eigenvectors: 
The actual states of the system, | Em>

⇢̂ =
X

m

|EmihEm|

NVE 
Recall classical mechanics: all states with “the right” energy (imposed by the Hamiltonian)  

have the same probability



Quantum Statistical Mechanics 
Quantum NVE 

Normalize Pm such as 

Tr(⇢̂) =
X

m

Em = 1

And we end up with:

Pm =

1

⌦NV E
with ⌦NV E =

X

Em=E

1 = number of states |Emi with Em = E

The microcanonical quantum partition function is - again - just the sum of all the possible states  
(This time is already dimensionless!)



AIMD 
The Born-Oppenheimer  approximation 

The starting point of ab initio MD: 
the (non-relativistic) time dependent Schröedinger equation for a system of  nuclei and electrons

Born-Oppenheimer approximation 
Due to the large separation of the nuclear and electronic masses,  

the electrons can be expected to be in instantaneous equilibrium with the much heavier nuclei,  
so that the electronic subsystem can be treated independently at constant Rnu

H| (rel,Rnu, t)i = i~ @
@t

| (rel,Rnu, t)i

 (rel,Rnu, t)i = �el(rel, {R⇤
nu}) · �nu(Rnu, t)

Most of the times, then, we treat quantum nuclei as classical particles,  
applying all the - classical - machinery we have seen so far! However: how do we deal with the electrons?

Is this always a fairly accurate assumption? What if it’s not?



End of Lesson 
End of lesson 


