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• Learning Outcomes  
• Changing the state function: Legendre Transform 
• Changing the partition function: Laplace Transform



Outline

• The need for something other than NVE 
• How to switch from one ensemble to another: the two Ls 

• Changing the state function: Legendre transform 
• Changing the partition function: Laplace transform 

• NVT: the canonical ensemble 
• State and partition functions 
• Thermostats 

• NPT: the isobaric (and isobaric/isothermal) ensemble 
• State and partition functions 
• NO Barostats 

• ηVT: the gran-canonical ensemble 
• State and partition functions 
• NO dealing with a variable number of particles

• Next: Free energy calculations…



Beyond the NVE 
Why do we need more? 

The NVE ensemble !!!!
• A lot of statistical mechanics is strictly valid in the NVE only 
• It is the computationally cheapest ensemble 
• In NVE the dynamics is as close as possible to the actual evolution of the system (with respect to any other 

ensemble) 
• It is - in principle - possible to simulate a system at a given temperature and pressure !
• Experiments are never performed in NVE conditions (constant energy) 
• In practice, one has to equilibrate the system at the conditions of interest before attempting a successful 

(energy properly conserved) MD run 
• Many interesting phenomena require the ability of simulating the system along a temperature or pressure 

gradient (phase transitions) 
• You maybe have to enforce a certain temperature or pressure - against the will of the NVE system 

(exothermic reactions) 
• NVE cannot deal with open systems (where the number of particles is not constant anymore)

Ensembles other than NVE allow us to simulate the system within certain conditions, 
much as a truly computer experiment

The ability to use - but not abuse! - ensembles beyond NVE opens many possibilities 
This is true for classical as well as ab-initio MD



Switching ensambles 
A couple of - powerful - StatMech tricks… 

The two main quantities that characterise an ensemble are  
its state function and its partition function

Luckily, once you have derived those two for the microcanonical NVE ensemble…

NVE state 
function

NVE partition 
function

Legendre 
transform

Laplace 
transform

With respect to the 
same (well, almost the 

same…) variable 

(~) State function 
of any other 
ensemble 

(~) Partition 
function of any 
other ensemble 

The thermodynamic potential that 
rules the ensemble (Entropy for NVE)

The phase space volume 
accessible to the system



Switching ensambles 
The state function 

The tool: Legendre transform

Microcanonical  
Ensemble 
S(N,V,E) 
Entropy

Canonical  
Ensemble 
A(N,V,T) 

Helmholtz 
Free Energy

Isobaric-
Isothermal 
Ensemble 
G(N,P,T) 
Gibbs 

Free Energy

Isobaric-
Isoenthalpic 
Ensemble 
H(N,P,E) 
Enthalpy

Grand Canonical  
Ensemble 
Ã(η,V,T) 

Grand Potential

E (S) ➙ T

N ➙ η

V ➙ P

V ➙ P

f̃(s) = f(x(s))� sx(s), s = f

0(x)



Switching ensambles 
The partition function 

The tool: Laplace transform

Microcanonical  
Ensemble 
Ω(N,V,E)

Canonical  
Ensemble 
Q(N,V,𝛽)

Isobaric-
Isothermal 
Ensemble 
Δ(N,𝛽p,𝛽)

Isobaric-
Isoenthalpic 
Ensemble 
Γ(N,𝛽p,H)

Grand Canonical  
Ensemble 
Z(-𝛽η,V,T)

E ➙ 𝛽

N ➙ -𝛽η

V ➙ 𝛽p

𝛽 ➙ H

f̂(s) =

Z 1

0
e

�sx

f(x)dx



The canonical (N,V,T) ensemble 
The idea 

In the NVT ensemble N and V are still fixed, but the system can exchange heat with 
its surrounding, typically approximated as a thermal bath, or thermal reservoire

The microcanonical ensemble NVE can be imagined as an isolated system

N particles - constant

Volume V - constant

Thermal bath - its temperature does not change no matter what…

Heat transfer

The temperature of the system is “constant” 
If you do things right, the energy will behave nicely as well…



The canonical (N,V,T) ensemble 
Changing the state function 

Now, recall the general formulation of the Legendre transform:

f̃(s) = f(x(s))� sx(s), s = f

0(x)

The state function of the NVE ensemble is S(N,V,E)

In NVT we are interested in a state function such as: A(N,V, T )

and 
1

T
=

✓
@S
@E

◆

N,V

Thus, we rewrite the NVE state function as E(N,V, S) so that T =

✓
@E

@S

◆

N,V

f̃ = A, f(x) = E(N,V,S), x = S, s = T

A(N,V, T ) = E(N,V, S(N,V, T ))� TS(N,V, T )

In this case, we aim at: S ! T so that:

The state function of the NVT ensemble is the Helmoltz  free energy

Not to be confused with the Gibbs free energy!

A is a very useful quantity: for instance, it tells you whether a certain process is 
thermodynamically favourable or not 

However, remember: thermodynamics means very little without kinetics! (More on that in the next Lecture…)



The canonical (N,V,T) ensemble 
Changing the partition function 
We need another mathematical tool: the Laplace transform: f̂(s) =

Z 1

0
e

�sx

f(x)dx

f̂(s) = Q(N,V,�), f(x) = ⌦(N,V,E), x = E, s = �

The variables involved are -almost- the same we have used for the Legendre transform! Thus:

Q(N,V,�) =

Z 1

0
e

��E⌦(N,V,E)dE

=

Z 1

0
dE

Z
dx

⇥
�(H(x)� E)e��E

⇤

=

Z
dx e

��H(x)

⌦(N,V,E) =

Z
�(H(x)� E)dx

=

Z Z
�(H(x, p)� E)dxdp

Z 1

0
f(y)�(a� y)dy = f(a)

Recall (1) Recall (2)

As in NVE, Q represents the total number of 
accessible microscopic states.

In NVT the Hamiltonian is not conserved. Rather, it obeys 
the Boltzmann distribution as a consequence of the fact that 

the system can exchange energy with its surroundings.



(N,V,T) in practice 
Thermostats 

How do we keep the temperature constant within an MD simulation?

We apply algorithms known as thermostats

• Not all the thermostat allow for an actual sampling of the NVT ensemble 
• There are many properties that in principle the ideal thermostat should satisfy

We usually come to a compromise…

…to (in my very personal opinion) the best option you have these days 
(Bussi-Donadio thermostat)

(Too) many choices available. In this lecture:

From the first thermostat ever (velocity rescaling)…



Thermostats 
Velocity rescaling 

The naive - also the first one ever - way to do it: velocity rescaling

Every n MD steps

v⇤
i (t) = vi(t) · ↵, ↵ =

s
hKiNV T

hKi(t) recall... hKiNV T =
NX

i=1

1

2
miv

2
i =

3

2
NkBT

• Literally no fluctuations (worst approach ever) 
• Not clear what you are sampling, surely not the NVT ensemble  
• Trajectories are strongly discontinuous, particles jump away at every rescaling.

Target temperature

Actual temperature of the 
system at time t

• Fast 
• Obviously very effective

In an ideal world…



Thermostats 
Berendsen thermostat 

Berendsen thermostat: a smoother evolution of the bare velocity rescaling

We change the temperature (or kinetic energy, equivalent…) according to  
how far away we are from the target value

dhKi(t)
dt

=
1

⌧
(hKiNV T � hKi(t))

Implies an exponential decay of the system toward the target temperature

hKi(t) = hKiNV T � c · e� t
⌧

• Wrong fluctuations 
• No proper NVT sampling (close enough for some systems, tragic for others) 
• Hot solvent-cold solute issue

• One of the best ways to equilibrate (even massive) systems very far 
away from equilibrium in a very short time

The Hidden Math - on Moodle



Thermostats 
Bussi-Donadio thermostat 

Bussi-Donadio thermostat: still a (sort of) velocity rescaling!

Instead of getting the exact value of the kinetic energy we want (as for the bare velocity rescaling),  
we pick a random value consistent with the canonical distribution for the kinetic energy:

↵(velocity rescaling) =

s
hKiNV T

hKi(t) ) ↵(Bussi-Donadio) =

s
hKiMB

hKi(t)

P (hKiMB) /
p

hKiMB · exp
✓
�hKiMB

kBT

◆

 0

 0.2

 0.4

 0.6

 0  4  8  12

P(
<K

> M
B)

<K>MB[arb. units]



Thermostats 
Bussi-Donadio thermostat 

However, this is not smooth enough (discontinuous trajectories are bad…). 
We can make it smoother by using the value of <K>(t-1) (previous step) to get <KMB>  (t) (current step):

This - evolution/prediction - of KMB is done via a a flavour of stochastic dynamics 
which basically adds a stochastic term to the Berendsen thermostat

dhKi(t)
dt

=
1

⌧
(hKiNV T � hKi(t)) + 2

r
hKi(t)hKiNV T

3

dW

⌧

hKi(t� 1) ) hKiMB(t)

This is Berendsen
This is a stochastic term 

(dW is some Wiener noise 
[white, Gaussian noise])

That is, the Bussi-Donadio thermostat is an extension of the Berendsen thermostat in which 
a random force is added to ensure the correct kinetic energy distribution.

√

http://www.sklogwiki.org/SklogWiki/index.php/Berendsen_thermostat


• But for crazily small coupling constants (never good in any case…) one 
can sample dynamical properties within the NVT ensemble.  

• It’s in CP2K, and I’d would say it’s always the best choice

Thermostats 
Bussi-Donadio thermostat 

hKi(t) = hKiNV T � c · e� t
⌧

Why the Bussi-Donadio thermostat is a flexible tool:

lim
⌧!0

! The system is instantly thermalised

lim
⌧!1

! NVE dynamics

Far from equilibrium, the Berendsen, deterministic part dominates 
and quickly brings the system where you want to.

At equilibrium the stochastic part kicks in, allowing for a proper sampling of the 
NVT esenemble via stochastic fluctuations consistent with the canonical distribution



The isobaric ensembleS 
Dealing with constant pressure (AND temperature?) 

Constant pressure: getting closer to most of the experimental conditions

(NPT,NPH) Volume V can change!

(NPT)Thermal bath

Heat 

N particles - constant

The volume is not constant anymore!

Two choices: 
• NPT ensemble - rather popular 
• NPH ensemble - rather unpopular 

Doing this require a barostat (possibly on top of a thermostat)



Isobaric-Isothermal (N,P,T) ensemble 
Changing the state function 

Legendre once more, this time starting from the NVT state function (the Helmholtz free energy)

The state function of the NPT ensemble is the Gibbs free energy. 
Particularly famous thermodynamics variable…

We aim at: so that:V ! P

A(N,V, T ) ! G(N,P, T )

f̃ = G, f(x) = A(N,V, T ), x = V, s = P

G(N,P, T ) = H(N,V (P ), T )� TS(N,V (P ), T )



Isobaric-Isothermal (N,P,T) ensemble 
Changing the partition function 

Laplace transform of the canonical partition function Q(N,V,�)

V ! �P

A not-so-silly detail (apparently lost in many Stat Mech. books): 

Extensive variables vs conjugate intensive variables

P vs �p

�(N,�p,�) =

Z 1

0
dV e

��pV ·Q(N,V,�) =

Z 1

0
dV

Z
dx e

��·(H(x)+PV )

V ! �p and N ! ��µ



Isobaric-Isoenthalpic (N,P,H) ensemble 
Changing the state function 

!
Once more - start from NVE and perform a Legendre transform for V -> P

f̃(s) = f(x(s))� sx(s), s = f

0(x)E(N,V, S)

The state function of the NPH ensemble (isoenthalpic-isobaric ensemble) is enthalpy

In this case, we aim at: so that:V ! P

f̃ = E

⇤
, f(x) = E(N,V,S), x = V, s = P

E⇤(N,P, S) = E(N,V (P ), S)� PV (P ) = H(N,P, S)



Isobaric-Isoenthalpic (N,P,H) ensemble 
Changing the partition function 

Exercise!



Grand canonical (𝝁,V,T) ensemble 
The idea In the (𝝁VT) ensemble, the number of particles is not a constant anymore

N(t=0) ≠ N(t=t*)

Volume V - constant

Thermal bath
Heat transfer

Some stash of particles

The chemical potential 𝝁 is

µi(µ, V, T ) =

✓
@A

@Ni

◆

V,T,Nj 6=i

or... µi(µ, P, T ) =

✓
@G

@Ni

◆

P,T,Nj 6=i

Yes, there is a (𝝁,P,T) ensemble…

Doing this in practice is not easy!

The chemical potential can be thought of as a measure of how much do you pay to insert 
an additional particle in the system



Grand canonical (𝝁,V,T) ensemble 
Changing the state function 

Legendre again, this time starting from the canonical ensemble. 
Instead of conserving the number of particles we want to conserve the chemical potential 𝝁

The state function of the Grand Canonical ensemble is known as “the Grand Potential”

N ! µ

f̃(s) = Ã(µ, V, T ), f(x) = A(N,V, T ), x = N, s = µ

Ã(µ, V, T ) = A(N(µ), V, T )� µN(µ)



Grand canonical (𝝁,V,T) ensemble 
Changing the partition function 

Laplace transform of the canonical partition function Q(N,V,�)

N ! ��µ
Some would say it’s an inverse Laplace transform,  

but in here everything is real, so it’s just the sign, really…

Z(��µ, V,�) =

Z 1

0
e

�µN ·Q(N,V,�)

=
1X

N=0

Z
dx e

�(µN�H(x))



The quantum case 
Long & easy ways… 

We could derive the (quantum) NVE ensemble from the Liouville(-Von Neumann) 
equation - exactly as we did for the classical case

And, we could derive all the other (quantum) ensembles from the quantum NVE ensemble

That would be a long way to go…

The easy way:

Classical equilibrium phase space distribution functions Quantum operators

Recall how do we perform an ensemble average…

hpi = 1

N�

N�X

�=1

p(x�, t = t

⇤)

=
1R

F (H(x))dx

Z
F (H(x))p(x)dx

hp̂i = 1

N�

N�X

�=1

h �|p̂| �i

Classical Statistical Mechanics Quantum Statistical Mechanics



The quantum case 
Long & easy ways… 

For instance…

Classical Statistical Mechanics

Quantum Statistical Mechanics

hpiNV T =
1

Q(N,V, T )

Z
e

��H(x)
p(x)dx

hpiNPT =
1

�(N,P, T )

Z
e

��(H(x)+PV )
p(x)dx

hpiµV T =
1

Z(µ, V, T )

Z
e

��(H(x)�µN)
p(x)dx

hp̂iNV T =
1

Q(N,V, T )g(Ek)

X

k

g(Ek)e
��ĤhEk|p̂|Eki

hp̂iNPT =
1

�(N,P, T )g(Ek)

X

k

g(Ek)e
��(Ĥ+PV )hEk|p̂|Eki

hp̂iµV T =
1

Z(µ, V, T )g(Ek)

X

k

g(Ek)e
��(Ĥ�µN)hEk|p̂|Eki



End of lesson 
!

• Learning Outcomes  
• Changing the state function: Legendre Transform 
• Changing the partition function: Laplace Transform



End of lesson 
Coming soon… 

A
(N

,V
, T

, s
)

s

A peek into the wondrous realm of the  
Enhanced Sampling (Vol.1) 



End of lesson 
!

• Perform the following linear transformations: (u = x and w = x +
ẋ). Now you have a parametric expression for the position x and the
momentum (well, just the velocity here...) ẋ. Plot these guys for
↵ = 10 and � = 1 to obtain the phase space plot depicted in Fig. 1 -
the same logarithmic spiral of the Nautilus.

�150

�100

�50

0

50

100

150

�150 �100 �50 0 50 100

M
om

en
ta

 [a
rb

. u
ni

ts
]

Positions [arb. units]

Figure 1: Phase space for the system introduced in Exercise 1.1 - a nicer
counterpart on the right.

1.2 Ab initio Molecular Dynamics

Given a rather peculiar quantum system described by the following Hamil-
tonian:

Ĥ
fake

=
N

elX

i=1

N

nuX

j=1

1

|r
i

�R
j

| + log[(Rx

j

)2] (5)

where r
i

, R
j

and Rx

j

are the position vector for the i-th electron, the position
vector for the j-th nucleus and the component along the x direction of the
latter respectively, demonstrate that the x component of the force acting on
a particular nucleus � can be written as:

F
R

�

x

= �h 
fake

|
N

elX

i=1

rx
i

�Rx

�

|r
i

�R
�

|3 +
2

R
�

x

| 
fake

i (6)

2

• Exercises! 
• Remember Moodle 
• Drop me a line 
• Additional session


