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Metadynamics à la carte



Introducing a time-dependent bias, or - to be precise - an history dependent bias: 
Many ways to do it! Adaptively biased MD, Local Elevation Umbrella Sampling, and…

Metadynamics 
The idea 

Up to know, we have been dealing with static bias: 
• In Thermodynamic Integration or Blue Moon ensemble, we perform a series of MD runs for 

different values of our CV 
• The same holds for Umbrella Sampling: the bias does not depend on time

Metadynamics 
A very popular option within the AIMD community
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The idea: 
A single MD run 

Every time we visit an already visited point of the 
free energy surface (FES), we add some bias (a 

Gaussian) in there.

We lower the probability of exploring the same 
region of the FES during the MD run
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Metadynamics 
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This way, we literally fill the FES till the system 
crosses the barrier, thus escaping toward another 

minimum

You can do that till you flatten the FES, obtaining 
the full free energy profile from the bias you have 

added

Note: in principle, you don’t need any a priori 
information about the FES



Metadynamics 
The - quick - math 
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Metadynamics 
The - quick - math 

The trick: replace the delta functions with Gaussians

In the limit of infinite height and zero width, this approximation is exact. 
In practice, of course, this is not the case. The wider/higher the Gaussians…
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In practice: This is in terms of the CV! 
Has to be chosen!
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Metadynamics 
The - quick - math 

So now you have a probability approximated as a 
sum of Gaussians over time:
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But then, why not adding a time dependent bias W to our MD simulations 
as a sum of Gaussians over time?

• hG: height of each Gaussian (to be chosen) 
• 𝜏G: defines how often (every how many MD steps) you add a Gaussian 
• The sum over 𝜏G: keeps track of the whole history of the MD run 
• 𝛥s: width of each Gaussian (to be chosen)

A point of the FES which we have already visited

WG(s, {r(t)}) = hG
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Metadynamics 
The - quick - math 

Let us assume you did things carefully, and that after a certain time t* 
(in principle infinite…) you have actually “filled” the FES
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All the bias W you have 
piled up in time

It is rather intuitive that if this is the case, then 

A(N,V, T, s) = �WG(s, {r(t⇤)})

This equivalence has very recently been proven exact 
(very tough derivation: )

!
Dama, James F., Michele Parrinello, and Gregory A. Voth 2014 

Well-Tempered Metadynamics Converges Asymptotically. Physical Review Letters 112(24): 240602. 



Well-Tempered Metadynamics 
When 

Metadynamics is rather useful not only for getting a FES, but also to 
explore it (new phases, new isomers, new reaction pathways…)

On the other hand, when do you stop? 
In a single metadynamics run, the FES does not converge to a definite 

value, but fluctuates around the actual results with an error: 

There is one way to make things smoother & well behaving: 
Well-Tempered Metadynamics

The basic idea: the height hG of the Gaussians we deposit decays with time 
(in standard metadynamics, hG is constant)
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Well-Tempered Metadynamics 
The idea 

We aim at rescaling hG  in such a way that: 
• We explore exclusively the regions of the FES in which we are truly interested in 
• In the long time limit, we converge to the exact FES 
• We don’t overfill - that is, we explore the FES as efficiently as possibile  

To this end:

hG(k�t) = hG(0) · exp

W (s({r(k,�t)}, k�t))

kB�T

�

Initial height of the Gaussians The bias at the current CV positions 
and at the current time step

Temperature-like parameter: it determines how 
quickly the height of the Gaussians decays in time

Within this approach, the free energy can be written as:

A(N,V, T, s) = �T +�T
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Well-Tempered Metadynamics 
A tremendous bargain 

The central quantity in here is this temperature-like factor 𝛥T

�T = 0 �T = 1
Standard 

Molecular Dynamics
Standard 

Metadynamics

By tuning 𝛥T, one can: 

• Facilitate the exploration in the CVs space 

• Limit the exploration of the FES region to an energy range of the order T𝛥T. Hence, the 
exploration of the FES can be limited to the physically interesting regions of s 

• Longer simulation time results in improved statistical accuracy in the relevant regions 

• The risk of overfilling is avoided, and optimal use is made of the computer time 

• Deciding when to stop the run is now simple, and post-processing is not necessary 

WTMD converges to the exact free energy in the long time limit 



Converging the FES 
Recrossing 

This is not easily observed, but even in the ideal case, you need time to converge

In order to converge the FES, crossing the free 
energy barrier just once is -definitely- not enough

Simulation time

C
V

In principle, when the FES is converged, the CV displays a diffusive behaviour

One needs to observe several 
recrossings, back and forth
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Till you actually fill the FES



Multiple Walkers 
Speeding up things 
! Especially within ab initio MD, computational time is an issue 

What if if takes to long to even cross the barrier once?

Multiple Walkers Metadynamics: 
The simplest way to parallelise a Metadynamics run

:

The deposited bias is shared among the different replicas so that the history 
dependent bias depends on the whole history

Same CV

Multiple 
replicas

Running in 
parallel

+

+
Much faster!



Adaptive Gaussian 
Avoiding traps 

Adaptive Gaussians: we change the width of the Gaussians on the fly

Suppose you are studying crystallization from the melt
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The liquid basin is - in whatever CV you choose - 
typically much wider than the crystalline basin

The width of the Gaussian we deposit is always 
the same!

Inefficient sampling 
And, you can easily get stuck



Order parameters 
The biggest issue of them all 

The choice of the order parameter is the most important thing to take care of  
in every enhanced sampling method

For one thing, the order parameter defines the FES you are going to get

And thus, the description of the process you are studying

Then, 
the more complex the rare event you are interested in, 

the more difficult is to choose the right CV. Or CVs

An easy textbook example: alanine dipeptide



Order parameters 
The biggest issue of them all 

A complex example [courtesy of Matteo Salvalaglio (Chem. Eng. @ UCL)]: 
crystal nucleation of molecules in solution



Order parameters 
The biggest issue of them all 

Common issues with order parameters: 
• They miss something, something you need to describe properly the process you are interested in 
• They do not distinguish well enough the different basins of the FES 
• Degenerate order parameters: one value of the CV corresponds to (too many) states of the system 

How do you know whether you have chosen a proper CV or not?

Sometimes the method simply won’t work

Even if it does - in the sense that you get a FES - 
care must be taken

1. Verify the stability of the minima you have found 
2. Perform a committor analysis



Committor Analysis 
A very useful tool 

The probability that the system, starting from a given point 
along e.g. the A-B path, will end up in basin B

Free energy calculations

free energy dynamics method by allowing a wider range of collective variables to be
used, and emerges as a powerful technique for sampling free energy hypersurfaces.

As an illustrative example of a d-AFED application, an alanine hexamer N-acetyl-
(Ala)6-methylamide was simulated in a 27.97 Å box of 698 TIP3P water molecules
at T = 300 K using the AMBER95 force field (Cornell et al., 1995). The collective
variables were taken to be the radius of gyration and number of hydrogen bonds in
eqns. (8.6.2) and (8.6.3), which were heated to a temperature of 600 K and assigned
masses of fifteen times the mass of a carbon atom. The spring constant κ was taken
to be 5.4× 106 K/Å2. The RESPA algorithm of Section 3.11 was used with a small
time step of 0.5 fs and 5 RESPA steps on the harmonic coupling. The free energy
surface, which could be generated in a 5 ns simulation is shown in Fig. 8.9 and shows
a clear minimum at NH ≈ 4 and RG ≈ 3.8 indicating that the folded configuration is
an right-handed α-helix.

8.12 The committor distribution and the histogram test
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Fig. 8.10 Schematic of the committor concept. In the figure, trajectories are initiated from
the isocommittor surface pB(r) = 1/2, which is also the transition state surface, so that an

equal number of trajectories “commit” to basins A and B.

We conclude this chapter with a discussion of the following question: How do we
know if a given reaction coordinate is a good choice for representing a particular
process of interest? After all, reaction coordinates are often chosen based on some
intuitive mental picture we might have of the process, and intuition can be misleading.
Therefore, it is important to have a test capable of revealing the quality of a chosen
reaction coordinate. To this end, we introduce the concept of a committor and its
associated probability distribution function (Geissler et al., 1999).

Let us consider a process that takes a system from state A to state B. We define
the committor as the probability pB(r1, ..., rN ) ≡ pB(r) that a trajectory initiated
from a configuration r1, ..., rN ≡ r with velocities sampled from a Maxwell-Boltzmann
distribution will arrive in state B before state A. If the configuration r corresponds to

pB(r)

In practice: 
Sets of n (many!) MD runs starting from 

different points 
(for each run we randomise the initial 

velocity according to the Maxwell-
Boltzmann at the temperature of interest)

C. Critical Nucleus Size on the (111) surface

To obtain an estimate of the critical nucleus size we performed a committor analysis2 on

the (111) surface. The results are depicted in Figure S3 and suggest a critical nucleus size

of circa 50 mW molecules, which is much smaller than our system size (4000 mW).
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FIG. S3. Committor probability (PB) with respect to the number Ncls of mW molecules in the

biggest ice-like cluster for the (111) surface (Eads = 1.04 kcal/mol, afcc = 3.90 Å). Three di↵erent

thresholds NB for the order parameter have been considered and reported. The analysis has been

obtained by shooting 30 statistically independent MD runs (2 ns long) from 40 di↵erent starting

configurations taken along a nucleation trajectory. The arrow marks the critical nucleus size ⇡ 50.
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We conclude this chapter with a discussion of the following question: How do we
know if a given reaction coordinate is a good choice for representing a particular
process of interest? After all, reaction coordinates are often chosen based on some
intuitive mental picture we might have of the process, and intuition can be misleading.
Therefore, it is important to have a test capable of revealing the quality of a chosen
reaction coordinate. To this end, we introduce the concept of a committor and its
associated probability distribution function (Geissler et al., 1999).

Let us consider a process that takes a system from state A to state B. We define
the committor as the probability pB(r1, ..., rN ) ≡ pB(r) that a trajectory initiated
from a configuration r1, ..., rN ≡ r with velocities sampled from a Maxwell-Boltzmann
distribution will arrive in state B before state A. If the configuration r corresponds to

pB(r)

Committor distribution

a true transition state, then pB(r) = 1/2. Inherent in the definition of the committor
is the assumption that the trajectory is stopped as soon as it ends up in either state
A or B. Therefore, pB(r) = 1 if r belongs to the state B and pB(r) = 0 if r belongs to
A. Fig. 8.10. It can be seen that, In principle, pB(r) is an exact and universal reaction
coordinate for any system. The idea of the committor is illustrated in

Unfortunately, we do not have an analytical expression for the committor, and
mapping out pB(r) numerically is intractable for large systems. Nevertheless, the com-
mittor forms the basis of a useful test that is able to determine the quality of a chosen
reaction coordinate. This test, referred to as the histogram test (Geissler et al., 1999;
Bolhuis et al., 2002; Dellago et al., 2002; Peters, 2006), applies the committor concept
to a reaction coordinate q(r). If q(r) is a good reaction coordinate, then the isosur-
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Fig. 8.11 Example histogram tests for evaluating the quality of a reaction coordinate. (a)
An example of a poor reaction coordinate; (b) An example of a good reaction coordinate.

faces q(r) = const should approximate the isosurfaces pB(r) = const of the committor.
Thus, we can test the quality of q(r) by calculating an approximation to the commit-
tor distribution on an isosurface of q(r). The committoe distribution is defined to be
the probability that pB(r) has the value p when q(r) = q‡, the value of q(r) at a
presumptive transition state. This probability distribution is given by

P (p) =
CN

Q(N, V, T )

∫

dNp

∫

q(r)=q‡

dNre−βH(r,p)δ(pB(r1, ..., rN ) − p), (8.12.1)

In discussing the histogram test, we will assume that q(r) is the generalized coordinate
q1(r). The histogram test is then performed as follows: 1) Fix the value of q1(r) at
q‡. 2) Sample an ensemble of M configurations q2(r), ..., q3N (r) corresponding to the
orthogonal degrees of freedom. This will lead to many values of each orthogonal coordi-

nate. Denote this set of orthogonal coordinates q(k)
2 (r), ..., q(k)

3N (r), where k = 1, ..., M .
3) For each of these sampled configurations, sample a set of initial velocities from a

Maxwell-Boltzmann distribution. 4) For the configuration q‡, q(k)
2 , ..., q(k)

3N , use each set
of sampled initial velocities to initiate a trajectory and run the trajectory until the sys-
tem ends up in A or B, at which point, the trajectory is stopped. Assign the trajectory
a value of 1 if it ends up in state B and a value of 0 if it ends up in state A. When the
complete set of sampled initial velocities is exhausted for this particular orthogonal



Which free energy method do I choose 
Should be the system, it’s your background 

In principle: 
The system itself and the rare event you are interested in should point you to the right approach

In practice: 
It mainly depends on your very personal background

It’s important to be willing to experiment! 
Enhanced sampling methods very rarely work out of the box - and implementing them can be a pain

For instance: in metadynamics you need the derivatives of your CVs, as the forces due to the bias 
are a function of the derivative of the CVs with respect of the atomic positions

http://www.plumed.org
Metadynamics (and much more) ready to go 

[on top of e.g. CP2K]



End of lesson 
Something 

Next: Surfaces & Interfaces

• Learning Outcomes  
• Metadynamics: the concept of a history-dependent bias 
• The key choice: why order parameters do matter


