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           Introduction 
 The development of novel nonvolatile memories (NVMs) is 
key to further our ability to retain, share, and process the ever-
growing amount of data generated every day. Current NVMs 
based on Flash technology suffer from relatively low speeds 
and limited endurance. Among the alternative options to Flash 
technology, phase-change memories  1 , 2   stand out as one of the 
most promising candidates, as attested to by the recent Optane 
memory, based on the Intel/Micron 3D Xpoint technology that 
entered the market in 2017 as a storage-class memory.  3 

 In phase-change memories, information is encoded into 
two different phases of phase-change materials (PCMs) such 
as chalcogenide alloys,  4 , 5   which can reversibly (up to  ∼ 10 12

times)  6 , 7   switch between the crystalline and amorphous phases 
upon Joule heating within a few nanoseconds (see the article 
by Kim et al. in this issue  7  ). The two phases have markedly 
different electrical resistance values that are exploited in the 
memory readout. 

 Although the Ge 2 Sb 2 Te 5  compound is presently the material 
of choice for phase-change memories, the quest for alloys with 
better performance continues.  5 , 8   For embedded applications 
in the automotive industry, for instance, data retention above 
100 ° C is desirable, which is not achievable with Ge 2 Sb 2 Te 5 . 
Other applications such as neuro-inspired computing  9   and 

photonic devices  10   would also benefi t from tailoring of the 
functional properties of phase-change alloys. To this end, a 
thorough understanding of the microscopic features of PCMs 
is mandatory. 

 In this regard, atomistic simulations can provide valuable 
microscopic information that would be diffi cult to be gained 
experimentally. First-principles (or  ab initio ) electronic-structure 
calculations are usually the tool of the trade, and the fi eld has 
greatly benefi ted from molecular dynamics (MD) simulations 
based on density functional theory (DFT).  5 , 8 , 11   –   14 

 Nonetheless, investigations of many properties of phase-
change alloys lie well beyond the capabilities of DFT methods. 
For instance, the crystallization of amorphous nanowires 
(a possible alternative architecture for phase-change mem-
ories) requires simulations of  ∼ 10 4  atoms for several nano-
seconds, while DFT simulations are typically limited to a 
few hundred atoms for up to few nanoseconds. 

 For a well-studied material such as silicon, it is straight-
forward to perform large-scale simulations by picking 
an empirical/classical potential of choice and by striking 
some balance between accuracy (some of which would be 
lost) and computational effi ciency. However, even though a 
classical interatomic potential has been devised for GeTe,  15 
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environments,16 which makes the construction of classical 
potentials challenging.

One way to solve this conundrum, where DFT is not fast 
enough, and classical potentials are not accurate enough, is to har-
ness machine learning (ML) algorithms17–19 to build interatomic 
potentials with (quasi-) ab initio accuracy and a computational 
efficiency (almost) comparable to that of classical potentials.

ML-based interatomic potentials
ML is by now a pervasive aspect of technology 
that is percolating rapidly into many scientific 
fields. Materials science is no exception, as ML 
may very well deliver the next generation of 
interatomic potentials for atomistic simulations. 
Currently, in this field, ML algorithms are used 
as a flexible tool to build a potential energy sur-
face by fitting a large data set (104–105 configu-
rations) of DFT energies and forces of relatively 
small (102 atoms) configurations; two popular 
approaches in this context are based on Gaussian 
approximations20 and neural networks (NNs).21

In the NN method of Behler and Parrinello,21  
the total energy of the system is written as the 
sum of atomic energies and the structure of the 
system is encoded by means of so-called sym-
metry functions that describe the local atomic 
environment of each atom up to a cutoff radius 
typically encompassing up to the third coor-
dination shell. As depicted in Figure 1a, the 
symmetry functions represent the input of a 
feed-forward NN, which consists of a collection 
of nodes and layers where the inputs are subject 
to a nonlinear transformation (via so-called acti-
vation functions) and then are linearly combined 
via a number of “weights” to eventually yield 
the total energy of a given configuration. The  
weights are randomly initialized and then refined 
by back-propagation in order to minimize the 
mismatch between the energies predicted by the 
NN and by DFT.21,22 Once a sufficiently good 
fitting is achieved, we can leverage it to obtain 
the energy of large models at low computa-
tional cost that scales linearly with the number 
of atoms. Crucially, forces and stress are read-
ily available from NN potentials, thus enabling 
fast MD simulations while retaining an accuracy 
close to that of the underlying DFT calculations.

In the next sections, we illustrate how the 
neural network potential (NNP) for the pro-
totypical phase-change compound GeTe that 
was generated in 201223 has allowed address-
ing several properties ranging from dynami-
cal heterogeneity and fast crystallization in 
the liquid phase to structural relaxations in the 
amorphous phase.

Functional properties of the PCM GeTe
A NNP for GeTe
The NNP for GeTe described in References 23 and 24 was 
constructed from the DFT energies of ∼30,000 configurations 
containing 64 to 216 atoms. The potential was validated against 
DFT calculations (an example is illustrated in Figure 1b) and 
it is capable of describing the bulk phases of GeTe as well as 
surfaces, nanowires, and nanoparticles.

Figure 1. (a) Neural networks (NNs) can be harnessed to construct a machine learning-
based interatomic potential starting from a data set of density functional theory (DFT) 
energies of small (100 atoms) configurations. The weights, w, of the NN are assigned by 
back-propagation, which is a procedure aimed at minimizing the mismatch between the 
energy predicted by the NN (ENN) and the DFT energies (EDFT). (b) Total pair correlation 
function, g(r), of liquid GeTe from a NN simulation with 4096 and 216 atoms, compared 
with DFT results for the smaller cell. The g(r) gives a measure of the probability of finding 
an atom at a distance r from an atom set at the origin. Adapted with permission from 
Reference 23. © 2012 American Physical Society.
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As a first application, the NNP was used to compute 
the thermal conductivity of the amorphous phase25 and the 
thermal-boundary resistance at the amorphous–crystalline 
interface.26 On this topic, the reader is referred to a recent 
review on the thermal properties of amorphous materials 
studied by means of ML potentials.27

Fragility of supercooled liquid and structural 
relaxations in glass
In phase-change memories, crystallization of the amorphous 
phase is achieved by electrical pulses that bring the material to  
a supercooled liquid state above the glass-transition temperature,  
Tg. One of the key properties of PCMs is that they tend to be 
fragile liquids,28 which means that their viscosity (η) remains 
fairly low at large supercooling, only to rise sharply very close 
to Tg. This feature allows atoms to remain highly mobile at 
low temperatures (T), albeit above Tg, where the thermody-
namical driving force for crystal nucleation and growth is 
also high.28 The NNP developed in Reference 23 allowed29 the 
function η(T) to be computed, providing an estimate of the 
so-called fragility index (the slope of η(T) at Tg), 
which turned out to be in reasonable agreement 
with later experimental data from ultrafast dif-
ferential scanning calorimetry.28

The atomic mobility at low T is further  
enhanced by a breakdown of the Stokes–Einstein 
relation between viscosity and diffusivity that 
was also predicted by MD simulations.29 This 
feature is typical of fragile liquids and is often 
ascribed to the emergence of dynamical het-
erogeneities consisting of spatially separated 
domains in which atoms move substantially 
faster or slower than average. This is illustrated 
in Figure 2a. Close to the melting temperature, 
the distinction between slow (blue) and fast 
(red) moving regions is minimal. However, 
as the system is cooled down, one can clearly 
notice the emergence of spatially localized 
domains (Figure 2b).30 These results were 
obtained by the so-called isoconfigurational 
analysis technique, which involves a large 
number (∼100) of MD simulations.30

Most notably, it turns out that fast-moving 
regions involve structural heterogeneities in 
the form of chains of Ge–Ge bonds, depicted in 
Figure 2c. These chains are ultimately respon-
sible for the breakdown of the Stokes–Einstein 
relation and thus for an enhancement of atomic 
mobility at high supercooling, which boosts the 
crystallization speed. They also play a role in 
the so-called resistance drift–a practical issue 
for phase-change memories whereby the resis-
tance of the amorphous phase increases over 
time due to aging. In fact, by combining NNP 
and DFT calculations, it was found that Ge–Ge 

chains are responsible for localized electronic states within 
the gap of the amorphous phase.31 Removal of these chains 
via structural relaxations over time (aging) leads to an energy 
gain and to a widening of the bandgap,31 which can explain the 
resistance drift (see Reference 32 for a review).

Moreover, it was recently shown that the presence of 
Ge–Ge chains provides a rationale for the experimentally meas-
ured reduction of the resistance drift in GeTe nanowires,24 
whose amorphous structure is characterized, on average, by a 
lower fraction of Ge–Ge chains compared to the bulk.

Crystal nucleation and growth
The short time scale of crystal nucleation and growth of PCMs 
offers the unique opportunity for DFT methods to study the 
crystallization process by means of unbiased MD simulations 
with an affordable computational load.33 Indeed, this has been 
achieved in several works,12,34 but the usage of still relatively 
small models inevitably leads to spurious interactions between 
the newborn crystalline nuclei and their periodic images, thus 
affecting both induction times and crystal growth velocities.

Figure 2. Dynamical heterogeneity in liquid GeTe from molecular dynamics simulations 
employing a neural network potential. (a) The color map refers to the density ρ of the 
dynamical propensity (DP), calculated according to Equation 4 in Reference 30. 
Slow- and fast-moving domains are highlighted in blue and red, respectively. (b) Spatially 
localized clusters of slow- and fast-moving atoms at 500 K. Chains of Ge–Ge bonds 
found in most mobile regions (purple) are highlighted in (c). Adapted with permission from 
Reference 30. © 2014 American Physical Society.
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The advent of NNP was a game changer in this respect, 
as it allowed the extent of finite size effects to be assessed 
(they are avoidable by using supercells containing at least 
about 1000 atoms) and to investigate crystal nucleation and  
growth in a wide range of conditions for supercells con-
taining 4000–32,000 atoms.35–37 Some of these findings are 
summarized in Figure 3. It was possible to identify differ-
ent nucleation regimes at different temperatures (Figure 3a) 
and to accurately estimate the crystal growth velocity, extract-
ed from the slope of growth profiles (Figure 3b). Recently, 
these growth rates were compared with those obtained for 
GeTe nanowires24 (Figure 3c), which enabled the study of the 
effects of nanostructuring on crystallization kinetics.

Heterogeneous growth of crystalline GeTe,37 a scenario  
of utmost relevance for phase-change memories, was also 
addressed by using large models of polycrystalline GeTe 
that allowed the competition between the growth of different 
grains to be followed (Figure 3d). Moreover, simulations 
of the crystallization of the most studied ternary compound 
Ge2Sb2Te5 have been performed recently by means of a ML-
based interatomic potential38 based on Gaussian approxi-
mations (the so-called GAP approach20): A representative 
result is reported in Figure 3e.

Conclusions
Although DFT simulations have provided invaluable contri-
butions to the study of PCMs, there is the need to bring MD 

simulations closer to the size scale of real memories in order to 
address key issues for the improvement of devices. ML-based 
interatomic potentials represent an effective solution, in that they 
can overcome the limitations of DFT calculations in terms of size 
and simulation time while keeping a quasi-ab initio accuracy.

In this article, we have illustrated some of the results obtained 
by means of a NNP for GeTe. The methodologies needed to con-
struct ML potentials are now more accessible than they were in 
2012 when the GeTe potential was devised. While a substantial 
effort is still needed to collect the huge data set of DFT energies, 
several promising advances,39,40 including stratified41 and implant-
ed42 NN are now available to tackle multicomponent alloys.43

There remain open questions in the field of phase-change 
memories that would greatly benefit from large-scale simula-
tions of multicomponent alloys such as the switching mechanism 
of Ge-rich alloys for automotive applications44 and of superlat-
tices/interfacial phase-change memories.45 For the hotly debated 
switching mechanism of interfacial phase-change memories,46 
DFT simulations have provided a number of different scenarios 
among which large-scale simulations might ultimately be able 
to identify the most plausible one. The impact of confinement 
effects and nanostructuring on crystallization kinetics is another 
issue where ML potentials can make a difference. Our previous 
work on GeTe nanowires is an example, but much remains to 
be explored, such as the fascinating possibility of monoatomic 
phase-change memories47 or PCMs encapsulated in carbon 
nanotubes,48 or even as isolated nanoparticles.49

Figure 3. (a–d) Results on the crystallization of GeTe from molecular dynamics simulations using a neural network potential. (a) Number of 
crystalline nuclei (>29 atoms) at different temperatures as a function of time in supercooled liquid GeTe. The number of nuclei first increases 
and then decreases due to coalescence. The two snapshots (insets at the top and bottom) show crystalline atoms forming a single nucleus 
or several nuclei at high and low temperatures, respectively. (b) The radius, R, of a crystalline nucleus of GeTe at two temperatures as a 
function of time. Reprinted with permission from Reference 35. © 2013 American Chemical Society. (c) Crystal growth velocity, u, of a 
GeTe nanowire (NW, green triangles) and at the crystal/liquid interface in the bulk (blue circles). Reprinted with permission from Reference 
24. © 2017 American Chemical Society. (d) C111 (red) and C100 (blue) crystalline grains in a polycrystalline model of GeTe at the beginning 
(t0) and end (tend) of the simulation. Projections along the xz planes are shown. Reprinted with permission from Reference 37. © 2015 
American Chemical Society. (e) Potential energy as a function of time in the simulation of the crystallization of Ge2Sb2Te5 with a Gaussian 
approximation potential. Reprinted with permission from Reference 38. © 2018 American Chemical Society.
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Besides the generation of interatomic potentials, ML and 
in particular NNs, have been recently exploited to predict 
glass properties by learning from the existing experimental 
database.50–54 There are still relatively few examples of this 
type of application of ML in glass science, and none so far for 
tellurides of interest for phase-change memories. However, 
the field is rapidly evolving and the growth of available data 
on phase-change alloys from both experiments and MD sim-
ulations could trigger the harnessing of ML to optimize alloy 
composition for tailored applications.

In conclusion, in light of what the community has achieved 
in the last few years, we feel that ML can truly contribute to 
the rational design of PCMs for memories and other applica-
tions in the near future.
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