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ABSTRACT
The formation of crystals has proven to be one of the most challenging phase transformations to quantitatively model—let alone to
actually understand—be it by means of the latest experimental technique or the full arsenal of enhanced sampling approaches at our
disposal. One of the most crucial quantities involved with the crystallization process is the nucleation rate, a single elusive number
that is supposed to quantify the average probability for a nucleus of critical size to occur within a certain volume and time span.
A substantial amount of effort has been devoted to attempt a connection between the crystal nucleation rates computed by means
of atomistic simulations and their experimentally measured counterparts. Sadly, this endeavor almost invariably fails to some extent,
with the venerable classical nucleation theory typically blamed as the main culprit. Here, we review some of the recent advances in
the field, focusing on a number of perhaps more subtle details that are sometimes overlooked when computing nucleation rates. We
believe it is important for the community to be aware of the full impact of aspects, such as finite size effects and slow dynamics, that
often introduce inconspicuous and yet non-negligible sources of uncertainty into our simulations. In fact, it is key to obtain robust
and reproducible trends to be leveraged so as to shed new light on the kinetics of a process, that of crystal nucleation, which is
involved into countless practical applications, from the formulation of pharmaceutical drugs to the manufacturing of nano-electronic
devices.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055248

I. INTRODUCTION

Understanding crystal nucleation is one of the fundamental
ambitions of physical chemistry.1–4 Far from being a theoretical
curiosity, the kinetics of crystallization has a crucial impact on many
natural phenomena, such as the formation of ice5 or the process of
biomineralization,6 and on a diverse range of practical applications,
such as the formulation of pharmaceutical drugs7 or the design of
novel nanostructures for data storage.8

If we were to ask the reader to pick a single observable to
characterize the nucleation process, the so-called crystal nucleation
rate J would probably turn out to be a very popular choice. J is
a scalar quantity that represents the average probability, per unit
time and per unit volume, for a critical crystalline nucleus to occur
within the supercooled liquid or the supersaturated solution of inter-
est. The apparently straightforward nature of J makes it ideal to
compare the crystallization kinetics of the same system in different

conditions or indeed between different systems as well. Crucially,
J can be both measured experimentally and estimated by means of
computer simulations, thus providing, in principle, a much sought
after connection between reality and modeling. However, long-
standing major inconsistencies between experiments and simula-
tions still persist as of today, despite the ever-growing capabilities
of molecular simulations.3,4

When dealing with estimates of crystal nucleation rates
obtained by means of atomistic simulations, the community
has identified several outstanding issues through the years.
Among the usual suspects, we can find the intrinsic limita-
tions of the models we use to describe the interactions between
atoms, or particles, or molecules.9–11 In addition, the rather
dated theoretical framework provided by classical nucleation the-
ory (CNT), while proving to be remarkably accurate in many
cases, has been repeatedly put into question within the last few
years.12,13
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Here, we are going to focus on some (seven) aspects of interest
for molecular simulations aimed at computing the crystal nucleation
rate. Some of these issues, such as the potentially slow dynamics of
the system,14 are often overlooked. Some others, for instance, the
existence of finite size effects,15 are very well known—and yet, the
extent of their impact on the estimate of J is still largely unexplored.
Understanding the contributing factors to the uncertainty character-
izing J is crucial, not only to keep working toward the perhaps overly
ambitious goal of reconciling simulations with experiments but also
to allow meaningful insight to be extracted from our simulations in
the first place. Indeed, these are really exciting times for the commu-
nity, as a number of recent works have provided an unprecedented
level of detail into specific aspects (negatively) affecting the calcula-
tion of J. From the necessity to account for the microscopic kinetics
of the system to the need of thoroughly investigating the adequacy of
the order parameters we use, we take stock of the state-of-the-art and
offer an opinionated perspective as to potential future developments
within the field.

This paper is organized as follows: after having set the bound-
aries of our discussion and briefly reviewed the computational tools
out our disposal as well as the above mentioned usual suspects
(Sec. II), we focus on seven different aspects that are detrimental to
the calculation of J by means of enhanced sampling atomistic simu-
lations (Sec. III). Finally, in Sec. IV, we assess the challenges ahead
and put forward several possibilities we hope the community will
decide to explore in the near future.

II. COMPUTING NUCLEATION RATES
In order to discuss the fundamental aspects of calculating

nucleation rates via atomistic simulations, we have to remove as
many layers of complexity as possible from both the system under
investigation and the conditions in which we are working on it. We
start by focusing on supercooling or supersaturation regimes that lie
well away from the spinodal limit where the free energy barrier asso-
ciated with the formation of a critical nucleus is vanishingly small.
Conversely, we have to avoid, by necessity, very mild supercooling or
supersaturation as well; in that case, the size of the critical nucleus is
usually too large to be even taken into account by means of atomistic
simulations. Then, we shall consider almost exclusively homoge-
neous nucleation, in principle, the simplest scenario available to us.
However, homogeneous nucleation is rarely observed in reality, with
heterogeneous nucleation being much more common. Indeed, it is
often very challenging to experimentally measure crystal nucleation
rates without any influence in terms of impurities, which almost
always manage to facilitate the crystallization process.3,4 Note, how-
ever, that much of what is discussed in the following is equally rel-
evant to studies of heterogeneous nucleation. In addition, we will
largely avoid the emergence of two- or even multi-step nucleation
processes (biomineralization being a prominent example) as well as
confinement effects. Excellent reviews on these topics and, broadly
speaking, on the subject of crystal nucleation as a whole can be found
in, e.g., Refs. 2, 3, 13, 17, and 18.

At this stage, it is useful to highlight the distinction between
“realistic” and “model” systems. Simulating the former usually rep-
resents an attempt to get as close as possible to the experimental
reality by utilizing the most accurate interatomic potentials avail-
able. Note that leveraging ab initio simulations is, aside for very

rare exceptions,8 simply not feasible, as both the time- and length-
scales involved in the crystal nucleation process (particularly tak-
ing into account its stochastic nature) lie far beyond the reach of
these accurate, but rather computationally expensive approaches.
Machine learning (ML)-based interatomic potentials19 represent an
especially intriguing avenue to strike the balance between the com-
putational efficiency of classical potentials and the accuracy of first
principles calculations; however, we argue that, aside for exceptional
cases where the kinetics of crystallization is unusually fast (see, e.g.,
Ref. 20), these novel potential are still too computationally costly
to be used to compute crystal nucleation rates with sufficient accu-
racy. Even when choosing the most accurate classical potentials at
our disposal, the computational cost involved with the calculation of
nucleation rates increases drastically, usually imposing a tough com-
promise between the quality of the simulations and the quantity of
the results. In fact, the majority of rate calculations for realistic sys-
tems (notable examples would be Refs. 10, 21, and 22) focus on a
single supercooling or supersaturation condition. Given that reach-
ing an agreement between experimentally measured and simulated
nucleation rates is, as we shall see shortly, very challenging, this is
obviously sub-optimal.

On the other hand, computing crystal nucleation rates for
“model” systems aims at employing simple and/or computational
inexpensive interatomic potentials, so as to explore different, e.g.,
supercooling conditions and thus extract useful trends to be com-
pared with the experimental data. Clearly, this often comes at
the cost of sacrificing some accuracy in terms of the description
of the actual system. However, it is important to point out that,
in some cases, simple potentials can describe experimentally rel-
evant systems to a very reasonable level of accuracy. Represen-
tative examples of such systems that we will often reference in
this work are the Lennard-Jones (LJ) system and colloidal par-
ticles. These have all been extensively investigated through the
years and thus offer the perfect opportunity to discuss several
aspect related to the calculation of nucleation rates via atomistic
simulations.

One issue that unfortunately unifies the vast majority of com-
putational studies, not necessarily limited to those dealing with crys-
tal nucleation rates, is the reproducibility of the results. This is espe-
cially evident in the case of LJ systems, where minimal modifications
to details such as the truncation/shift (which vary wildly within the
literature) lead to substantially different melting curves and nucle-
ation rates. In fact, as we shall discuss in greater detail in Sec. II B,
the estimate of J is incredibly susceptible to each and every feature of
the interatomic potential of choice. In this context, it is comforting
to witness the emergence of more and more open access databases
where the actual input files used to obtain a particular computational
results are reported in full (see, e.g., Ref. 23), thus greatly facilitating
cross-validation.

In contrast, one key issue that stubbornly refuses to yield to the
efforts of the community is the long-standing discrepancy between
experimental and simulated crystal nucleation rates. Perhaps the
starkest reminder of how much work remains to be done in the
field is given by the current state of affairs with respect to col-
loidal systems. These qualify as “simple” systems, given that they
can, in principle, be modeled via very inexpensive models, such as
hard or soft spheres. Crucially, it is also possible to measure crystal
nucleation rates of colloidal systems via relatively straightforward
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experimental techniques such as confocal microscopy.24 As can be
seen in Fig. 1, however, while experiments and simulations agree
quite well at strong supersaturation, discrepancies as large as ten
orders of magnitude can be found at weak supersaturation, thus
indicating that, perhaps, our simple models cannot, in fact, be used
to simulate these systems accurately enough. This evidence is quite
astonishing, as we have by now reached a point where different
approaches to the calculation of J are consistent with each other. In
particular, the simulation results reported in Fig. 1 for weak super-
saturation (obtained by Fiorucci et al. in 202016) have been vali-
dated by three different methodologies. The fact that the discrepancy
between experiments and simulations still persists is thus suggestive
of the possibility that there must be some fundamental aspect of our
simulations that we are still missing—and that has nothing to do
with the choice of the method used. Potential culprits are the poly-
dispersity and the deformability of the particles or effects related to
sedimentation and hydrodynamics, albeit the latter has been very
recently ruled out.16

A. The tools at our disposal
What options are available to the computational scientist in

order to calculate crystal nucleation rate by means of atomistic sim-
ulations? To start with, the so-called “brute force” simulations con-
stitute the most straightforward option: the idea is to bring the simu-
lated liquid (or solution) into a supercooled (or supersaturated) state
and simply run a set of unbiased simulations in the hope that the
system will crystallize on a reasonably short timescale. At that point,
methodologies such as the mean first-passage time (MFPT) can be
used to extract the nucleation rate.25,26 Brute force simulations are

FIG. 1. The inconsistencies between experimental and simulated nucleation rates
persists. Nucleation rate Jσ5

eff/D0 as a function of the volume fraction ϕ of a
system of “nearly” hard spheres. This is often considered as a “model” system,
given the relatively straightforward interactions between the constituent particles.
Experimental results are reported in green, while the outcomes of a variety of sim-
ulations are reported in blue or red. Note the substantial discrepancy (∼10 orders
of magnitude) between experiments and simulations in the weak supersaturation
regime. The data points in red have been obtained in Ref. 16 by means of three
different approaches and are impressively consistent with each other, which is
indicative of the fact that said discrepancy has nothing to do with the methodology
employed. Reprinted from Fiorucci et al., J. Chem. Phys. 152, 064903 (2020) with
the permission of AIP Publishing LLC.

regarded as useful benchmarks to compare the results of enhanced
sampling simulations with. However, not very many systems will, in
fact, crystallize quickly enough, under experimentally relevant con-
ditions, for this method to be applied. The reality is that, in most
cases, enforcing spectacularly strong supercooling or supersatura-
tion conditions is a necessity—and at that point, one should start
questioning whether the nucleation events we are seeing do, in fact,
conform to the definition of nucleation as a rare event, an aspect we
will address in more detail in Sec. III A. More often than not, brute
force simulations aimed at calculating crystal nucleation rates are
used for model systems such as LJ liquids or colloids.27,28 However,
particularly impressive results have been obtained of late for metallic
alloys as well,29,30 in some cases via simulations involving millions of
atoms.31

In order to compute crystal nucleation rates for realistic sys-
tems or indeed for model systems within a wider range of super-
cooling or supersaturation, enhanced sampling techniques represent
the tools of the trade. These can be classified as free energy-based or
path sampling-based techniques. The former seeks to obtain infor-
mation about the thermodynamics of the process, and as such, they
do not offer immediate access to the kinetics of nucleation. How-
ever, it is possible, in principle, to use the outcomes of, e.g., umbrella
sampling32–35 or metadynamics simulations36–39 (most prominently,
the free energy profile or surface) as the starting point to com-
pute the nucleation rate. Popular options in this context include
the family of Bennett–Chandler methods for the calculation of rate
constants40 and the approach recently pioneered by Tiwary and
Parrinello.41,42

In contrast, path sampling-based techniques, such as transition
path sampling (TPS),43–45 transition interface sampling (TIS),46–48

and forward flux sampling (FFS),10,21,22,49,50 all allow for the direct
calculation of nucleation rates. Interestingly, until quite recently, not
many examples of any of these methodologies being applied to the
calculation of J could be found in the literature, most likely due to
the high computational cost associated with converging these algo-
rithms. However, the ever-growing capabilities of high performance
computing facilities, together with the trivially parallel nature of the
simulations often needed to sample the crystallization paths, have
massively boosted the feasibility of path-sampling methods in the
last few years.

Perhaps unsurprisingly, ML has started to help in the context
of enhanced sampling methods as well—not so much as to drive
the nucleation process itself but to aid and complement the struc-
tural analysis of the newborn nuclei as well as the nucleation paths.
Recent examples include the work of Desgranges and Delhom-
melle,51 where ML is used to infer the free energy of a LJ system over
a wide range of densities and temperatures; the work of Bonati and
Parrinello,52 in which ML is used to train a model capable of describ-
ing the crystal nucleation of silicon, starting from a dataset obtained
by metadynamics simulations; and the recent work of Adorf et al.,53

where ML has been harnessed to analyze the nucleation pathways of
colloidal systems.

Finally, seeding techniques54–56 can also be used as a starting
point to extract crystal nucleation rates. These approaches relies on
sampling the evolution of sets of crystalline nuclei of a given size
that are inserted into the supercooled liquid or supersaturated solu-
tion. Particularly famous examples include the nucleation of ice57

and NaCl.9
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B. The usual suspects: Classical nucleation theory
and force fields

The inconsistencies between experimental and simulated crys-
tal nucleation rates, such as those we have discussed in the case of
colloidal systems in Sec. II, are often thought to be due to the usage
of CNT and/or a particular force field. The two are not unrelated
either, in that several thermodynamic parameters needed to estimate
J via CNT, such as the chemical potential difference between the
liquid and the crystal, Δμ, and crystal-liquid interfacial free energy
γ, vary wildly according to the choice of a given force field. Several
attempts to improve upon the value of Δμ, provided the force field in
question, can be found in the recent literature. For instance, Wang
et al.58 used a second-order Gibbs–Thompson equation to obtain a
reliable description of the temperature dependence of Δμ in the case
of ice nucleation. In other studies, the concept of an “effective” γ has
been adopted in, e.g., Ref. 9 to describe the nucleation of NaCl from
solution, instead of the often-used value of γ referring to a macro-
scopic flat interface. In fact, evidence from the field of ice nucleation
confirms that values of γ for finite nuclei extracted from simulations
via seeding59 or umbrella sampling60 are indeed quantitatively dif-
ferent from those computed from planar interfaces.61–63 Taking into
account the Tolman correction64 contributes (partially) to bridging
the difference, noting that the Tolman length encapsulates only the
first term in an expansion of a difference, which may not be small.

Indeed, a major point of contention with respect to CNT is
its usage at the microscopic scale, where the distinction between
solid and liquid phases is not clear cut and the actual value of
the thermodynamic parameters involved is bound to differ from
their macroscopic counterparts. Even when applying this correc-
tion, however, discrepancies of about 15 orders of magnitude with
respect to J can still be found in Ref. 9. The Joung–Cheatham
force field65 for NaCl and the extended simple point charge model
(SPC/E) used for water might be partially responsible for that dis-
crepancy still, the authors suggest—but it has to be said that the
choice is superior to that adopted in previous works where the GRO-
MOS85 force field, which overestimates the stability of the NaCl
wurtzite structure, was used.66 In Ref. 9, it is acknowledged that
no current force field for NaCl will perfectly capture the chemical
potential difference between ions in solution and ions encapsulated
in a bulk crystal and hence reproduce exactly the experimental sol-
ubility. However, it is argued that provided one compares between
simulation and experiment at the same value of this chemical poten-
tial difference (but different absolute concentration), one should
be able to draw meaningful conclusions. This requires the crystal
solubility within the chosen force field to be known accurately. In
the case of the Joung–Cheatham model, various estimates of this
solubility have been made,67–69 eventually reaching a consensus70

subsequently confirmed by increasingly advanced methods71 to be
approximately half of the experimental value. This indicates that
force fields tractable to nucleation simulations are far from suffi-
ciently accurate in absolute terms. Later work72 re-examined the
results of Ref. 9 in light of the revised estimates of model solubility,
resulting in much improved agreement with experimental nucle-
ation rates when compared at the equivalent chemical potential dif-
ference. That is, the authors found that reliable results in terms of J
can be obtained when the driving force for nucleation, Δμ, and the
solubility are consistent with each other and accurate with respect
to the particular model/force field used. This means that even if J is

in agreement with the experiments, the actual solubility of the force
field is, in this case, not consistent with the experimental value at
that particular supersaturation. This work also demonstrated a very
strong sensitivity to the choice of order parameter used to quantify
the nucleus size. We return to this question in Sec. III F.

To illustrate how sensitive the calculation of J is to the inac-
curacies of the force field, we refer to the work of Haji-Akbari and
Debenedetti,10 where the ice nucleation rate has been computed via
FFS using the TIP4P/ice water model at the very strong supercool-
ing of 42 K. This choice might appear rather extreme but it is not
unusual: when dealing with realistic and/or computationally expen-
sive force fields, resorting to very strong supercooling or supersatu-
ration is often the only way to gain any insight into the nucleation
process, even when using state-of-the-art enhanced sampling meth-
ods. This is important because in this scenario, one has to extrapolate
the value of J at milder supercooling in order to be able to compare
the computational result to the experimental reality. Once again,
then, CNT comes into play and with it multiple potential sources of
inaccuracies. In the case of Ref. 10, the authors observe a discrepancy
of about eight orders of magnitude between simulated and exper-
imental nucleation rates—a difference that can be explained, they
argue, by noting that the TIP4P/ice water model yields a value of Δμ
that, corresponds to an enthalpy difference about 20% smaller than
the experimental value. Similar arguments can be found in other
recent works. For instance, Arjun et al.73 put forward the usage of
a specific water model as the reason why the free energy barriers rel-
ative to the nucleation of methane hydrates, obtained via TPS, are
found to be lower with respect to previous results.

Indeed, the reliability of water models is a major issue when
dealing with crystal nucleation from solution. We have already men-
tioned the case of NaCl, but perhaps the most prominent scenario in
this context is that of biomineralization, where the water model has
to capture the complex interaction with the mineral under inves-
tigation. In their recent review, Demichelis et al.11 argued that an
accurate description of the solubility of the mineral, a quantity often
neglected in the first parameterizations of force fields for simula-
tions of biomineralization, is paramount to obtain robust results.
The additional layer of complexity in that field is the scarcity of
experimental data, particularly in terms of clustering and specia-
tion (under conditions accessible by both experiments and sim-
ulations) available for the computational scientists to build their
force field upon. Electronic structure calculations have been used
to fill that gap, which, in turn, highlighted the absolute need for
polarizable force fields when dealing with the crystal nucleation of
biominerals.11 Unfortunately, the additional computational expense
of such models makes quantitative calculation of J intractable at this
time.

Another example, yet again from the ice nucleation field, is
given by the recent work of Shi and Tanaka,74 where the authors
have found that in the case of the TIP5P model, the treatment of elec-
trostatic interactions has a huge impact on the nucleation process,
to the point where results massively favored a specific (ferroelec-
tric) crystalline phase. The fact that truncating electrostatic or indeed
even non-bonded interactions can have a substantial effect on the
property of the force field—and thus, indirectly, on the estimate of
J—is well known (see, e.g., Ref. 75) but not necessarily discussed in
a transparent, reproducible manner in all computational studies so
far. In the same work,74 Shi and Tanaka also pointed out that while
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CNT assumes the liquid to be a perfectly homogeneous phase, this
might not be the case.

The fact that supercooled liquids and supersaturated solutions
exhibit both structural and dynamical heterogeneities is well estab-
lished, but only in the last few years, we have started to witness the
first attempts to make a connection between the pre-ordering of the
liquid and crystal nucleation. As an example, Menon et al.76 recently
investigated the crystal nucleation of molybdenum via TIS simula-
tions, finding that the emergence of crystal-like precursors plays a
role in polymorph selection. As it concerns dynamical properties,
Fitzner et al.77 recently established a link between the dynamical
heterogeneity of supercooled liquid water and the occurrence of ice
nucleation.

In summary, we hope we have convinced the reader that the
accuracy of the force fields we use is intertwined with the reliabil-
ity of our CNT predictions. However, we argue that this picture is
far from complete and that there exist several additional issues that
might come into play when computing J via molecular simulations.
In Sec. III, we will highlight seven such aspects, presenting some
relevant examples from the recent literature with the aim to bring
together the efforts of the community toward an ever-increasingly
accurate picture of the crystal nucleation process from a microscopic
perspective.

III. THE SEVEN DEADLY SINS
A. Rare events—Or are they?

The central idea at the heart of the CNT kinetics was devel-
oped by Becker and Döring in 1935:78,79 the time evolution of
the distribution of crystalline clusters is treated via a formalism
equivalent to that of chemical rate equations—under a number
of assumptions. For instance, they assumed that the nuclei either
shrink or grow via losing or gaining a single atom, particle, or
molecule to the existing nucleus. Most relevant to this section,
though, is the assumption of a quasi-stationary distribution (QSD)
of nuclei,80 which is supposed to not get depleted in time by the
formation of critical nuclei—once critical clusters form, they are
removed from the distribution and new smaller nuclei are added,
so as to achieve a steady state. Provided that the free energy
barrier associated with the formation of critical nucleus is “high
enough,” the supercooled liquid (or the supersaturated solution)
is to be found in a metastable state with respect to the crystalline
phase within a timescale much longer than its relaxation time,
thus allowing us to compute J as a steady-state crystal nucleation
rate.

In this scenario, we are dealing with a rare event characterized
by a survival probability Pliq(t∗) for the supercooled liquid or super-
saturated solution that decreases exponentially with time t as, e.g.,
Pliq(t∗) = exp(−Jt∗). In other words, the nucleation times (to be
observed across a sufficiently large ensemble of either experiment
or simulations, given the stochastic nature of the nucleation pro-
cess) are distributed according to Poisson statistics. In the context
of unbiased simulations of crystal nucleation, verifying this condi-
tion is relatively straightforward, as illustrated in Fig. 2 where we
report the time evolution of 220–820 (see the Appendix for fur-
ther details) molecular dynamics (MD) trajectories of a LJ system
at different supercooling and the corresponding survival probabil-
ity for the liquid phase. At very strong supercooling [Fig. 2(a)], the

free energy barrier is so low that the liquid is basically unstable, as
opposed to metastable, with respect to the liquid phase. As such,
there is no incubation (or waiting) time, as the system immediately
proceeds to crystallize on a timescale comparable to that of its relax-
ation time. The resulting survival probability is thus a step function
which tell us that, in these conditions, we are not dealing with a
rare event in the first place. At milder supercooling [Fig. 2(b)], we
reach a “butter zone” (i.e., a temperature regime ideally suited to
extract, in this case J) where we can sample P(t) across a sufficiently
large timescale, long tails included. This is an ideal setting to accu-
rately compute J. Finally, at very mild supercooling [Fig. 2(c)], we
are obviously dealing with even rarer events—however, the timescale
associated with the nucleation process is such that we can only
sample a very small portion of the relevant P(t), thus robbing us
from the possibility of investigating the actual decay of this func-
tion and assessing whether it is truly consistent with a Poisson
distribution.

It is important to point out that this “butter zone” might sim-
ply not exist for some systems, particularly slow-diffusing ones
for which the balance between supercooling (or supersaturation)
and atomic/molecular mobility results in timescales too long to be
probed by means of unbiased simulations even at strong supercool-
ing. The opposite problem, that of “not rare enough” events, is also
encountered experimentally, and it might coincide with the onset of
spinodal decomposition. An intriguing take on this matter is given
by Sear,81 who provocatively puts forward the idea that “the nucle-
ation rate may not exist,” given that, by looking at the experimental
data, the survival probabilities measured for a variety of systems are
far from being exponential.

This is especially true when considering heterogeneous nucle-
ation, where structural or even chemical changes in the impu-
rity involved with the nucleation process often result in time-
dependence nucleation regimes as opposed to the steady state J
we are after. Fortunately, several studies aimed at rationalizing the
experimental data available to us can be found in the recent litera-
ture. As an example, Maggioni and Mazzotti82 looked into an exten-
sive set of literature data on the crystallization of p-aminobenzoic
acid in three different solvents, developing a statistical analysis that
allows us to quantify the uncertainty of experimental nucleation
data—a crucial aspect to facilitate the comparison with simulated
nucleation rates.

An interesting aspect that unifies the majority of the modeling
of nucleation data is the assumption that nucleation can be consid-
ered as a Markovian process—that is, there is no history dependence.
However, it is becoming apparent that this assumption might not
always hold. For instance, Jungblut and Dellago83 found that the
nucleation dynamics of a particular LJ system shows non-Markovian
aspects due to the lack of a good enough reaction coordinate (RC),
an aspect we will discuss in greater detail in Sec. III F and that
results in underestimating the nucleation rate if using MFPT meth-
ods. Indeed, the recent work of Kuhnhold et al.,14 also investigat-
ing the crystal nucleation of a LJ melt, highlighted the emergence
of non-Markovian dynamics and went as far as saying that CNT
has to be considered as the limiting case of a more general theo-
retical framework that includes history-dependent aspects. In the
words of the authors, crystal nucleation may be “neither Marko-
vian nor diffusive.” It is important to point out that the term “non-
Markovian” can refer to two distinct issues, both of which will be
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FIG. 2. Crystal nucleation of a LJ liquid at different supercooling. The freezing curves (left panels, shifted so that the nucleation times lie at Δt∗ = 0) and survival probabilities
Pliq(t∗) (right panels, as a function of time elapsed, t∗) for the same LJ system at different (reduced) temperatures T∗. (a) Strong supercooling (T∗ = 0.68): the liquid is
unstable with respect to the crystalline phase. (b) “Butter zone” (T∗ = 0.765): it is possible to sample the exponential decay of Pliq(t∗) across a sufficiently long timescale.
(c) Mild supercooling (T∗ = 0.8): it is possible to accumulate statistics with respect to the nucleation times only within a very limited timescale compared to the decay of
Pliq(t∗). We have fitted the survival probabilities according to the CNT-like expression Pliq(t∗) = exp[−(Jt∗)α

], where α is a fitting parameter accounting for the possibility
of non-exponential nucleation kinetics. The uncertainty associated with the unconstrained fit is shown as shaded regions. The details of the LJ simulations are given in the
Appendix.

discussed in this work. First, the occurrence of nucleation events
itself might or might not be a Markovian process. But then, there is
the question of whether the description of the crystallization process,
by means of the evolution of the order parameters we shall discuss
in Sec. III F, is Markovian or not.

At this stage, we should ask ourselves how would enhanced
sampling fare in extracting accurate nucleation rates, given that even
unbiased simulations struggle in some cases to recover reliable esti-
mates of J. A central argument in this context is quantifying the
uncertainty associated with any given methodology. The discussion
contained in Ref. 84 highlights once more the importance of sam-
pling a QSD: in particular, the work of Binder et al.85 on parallel
replica dynamics offers some practical considerations that allow the
computational scientist to analyze the obtained nucleation times. If
the latter are exponentially distributed, we might be working in con-
ditions close enough to a QSD—but not necessarily. Cases where the
P(t) is exponential but the Markov process did not reach the QSD
are still a possibility. Similar arguments apply to the case of extract-
ing nucleation rates starting from the “infrequent metadynamics”
framework of Tiwary and Parrinello.86 In particular, Salvalaglio et al.
devised a simple and computationally inexpensive methodology,
based on the Kolmogorov–Smirnov test, to assess the reliability of
the kinetics of nucleation obtained from metadynamics simulations.

This framework identifies several problematic cases where, e.g., the
applied bias is strong enough for the system to move away from the
QSD.41,87,88

B. Finite size effects
The fact that finite size effects can have a substantial impact on

the estimate of J should hopefully come as no surprise. A frequently
encountered rule of thumb consist in working with a simulation box
larger than two times the extent the critical nucleus size in any given
dimension. However, the reality is that, without a thorough investi-
gation of finite size effects using, e.g., increasingly large simulation
boxes, the extent of this effect is impossible to quantity a priori.
This is a real issue, as in many cases, one can rarely afford the com-
puter time needed to repeat their simulations with larger simulation
boxes—particularly when computing the nucleation rate for realis-
tic systems. In addition, the impact of finite size effects is related to
the supercooling or supersaturation conditions as well. The case of,
e.g., mild supercooling is very well-known: as the critical nucleus size
becomes (exponentially) larger as the supercooling decreases, larger
boxes are, by definition, a necessity. However, at strong supercool-
ing, the average density of pre-critical nuclei is much higher than
what is observed at mild supercooling, thus posing the problem of
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the interaction between different smaller nuclei (as opposed to the
very rare/large critical nuclei observed at mild supercooling). Finite
size effects are also strongly connected to the issue of solute depletion
we will discuss in Sec. III C.

Attempts to quantify the severity of finite size effects in simula-
tions of crystal nucleation date back to the seminal work of Honey-
cutt and Andersen on LJ systems in 1986,89 where the density of crit-
ical nuclei was investigated. The actual influence of finite size effects
on the calculation of J has been quantified much later, though—the
work of Huitema et al. in 2000 being an excellent example.90 By
then, the typical system size was in the region of 104 LJ particles.
These days, however, in many cases, we can afford to investigate
much larger systems. For example, Ouyang et al. recently probed the
finite size effects on the crystal growth rate of LJ systems using mod-
els containing up to 106 LJ particles,28 taking advantage of graphics
processing unit (GPU)-accelerated molecular dynamics simulations.

Perhaps one of the most striking results within the recent litera-
ture concerning finite size effects in the context of crystal nucleation
rates is the work of Mahata and Asle Zaeem,91 which focuses on
the crystal nucleation of elemental metals described via the second
nearest-neighbor modified embedded atom method (2NN-MEAM)
interatomic potential. As illustrated in Fig. 3, the authors considered
models containing up to 107 atoms, providing reliable estimates of J
as a function of system size. While many would probably argue that
discrepancies barely spanning a single order of magnitude are to be
considered as small in the context of J estimates, it is intriguing to
observe that finite size effects are still very much present even in sys-
tems containing millions of atoms. In addition, the results reported
in Fig. 3 show a non-monotonic dependence of J with respect to
the system size. This is an intriguing finding, in that it is rather
common to assume that the presence of finite size effects tends to
consistently overestimate the nucleation rate. However, it appears
that the picture is more nuanced—and certainly largely unexplored

FIG. 3. The impact of finite size effect on the estimate of crystal nucleation rates.
Nucleation rate for atomistic models of Al, obtained via mean the first-passage
time (MFPT) method, for different system sizes. These simulations took advantage
of the computational efficiency of the second nearest-neighbor modified embed-
ded atom method (2NN-MEAM) interatomic potential to explore finite size effects
arising when dealing with up to several millions of atoms. Adapted from Ref. 91.

still. Indeed, the recent work of Hussain and Haji-Akbari,15 which
thoroughly explored the impact of finite size effects in the context of
simulations of heterogeneous ice nucleation, shows a positive lin-
ear correlation between the (log10 of) the nucleation rate and the
system size. The same work provides a number of practical guide-
lines, particularly in terms of quantifying the spurious interactions
between pre-critical nuclei due to small simulation boxes and how
to differentiate such interactions from those originating from very
strong supercooling regimes. These concepts can and should be con-
sidered when dealing with simulations of homogeneous nucleation
as well.

An interesting aspect of finite size effects is that the latter
are almost always thought of in terms of structural correlations
within the supercooled liquid or supersaturated solution. How-
ever, recent evidence suggests that dynamical correlations might
also play a role (see the excellent review of Zanotto and Montaz-
erian92). For instance, the work of Fitzner et al.77 established a
correlation between dynamical heterogeneities within supercooled
liquid water and the emergence of ice nuclei, and similar find-
ings have been reported for a diverse portfolio of systems, from LJ
liquids93 to oxides94,95 and metallic glass formers as well.96 Dynam-
ical correlations can span much larger length-scales than the struc-
tural ones, thus prompting the question of whether up-to-now unde-
tected finite size effects in terms of dynamical properties might be
present in our simulations of crystal nucleation—a largely unex-
plored possibility.

Finally, finite size effects are important when computing the
solubility of, e.g., ions in solution,55 which, in turn, is key to calculate
J if leveraging CNT via, for instance, seeded approaches. The case of
NaCl is especially relevant and will thus be discussed in Sec. III C,
where we will tackle the emergence of solute depletion effects—an
occurrence very much related to the size of the simulation box and
thus to the possibility of finite size effects as well.

C. Solute depletion
The molecular simulator is usually interested in quantifying the

nucleation rate by studying a small volume of the system, repre-
sentative of the bulk metastable parent phase. Simulations should
ideally capture the coupling of this volume to its environment (i.e.,
the rest of the bulk system) via exchange of both particles and heat.
Most simulations of nucleation from solution have been conducted
with a constant number of solute particles. The nucleation of a solid
phase when working with relatively small simulation boxes leads to
a change in the effective supersaturation of the simulation due to
the fact that the crystalline phase nucleates at the expenses of the
solution phase, thus depleting the latter to an extent proportional to
the number of particles/atoms/molecules contained in the simula-
tion box. Real systems are large enough to compensate the resulting
change in terms of chemical potential, but in atomistic simulations,
this is a serious issue, which is less evident (albeit still present and, we
argue, rather unexplored up until now) for crystal nucleation from
a supercooled liquid (where as opposed to “depletion,” the empha-
sis is on the density difference between the liquid and the crystal)
but quite spectacularly evident for crystal nucleation from a super-
saturated solution. As an example, in Fig. 4(a), it can be seen that
the free energy surface relative to the formation of crystalline NaCl
from solution simply lacks the basin corresponding to the crystalline
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FIG. 4. Simulating the crystal nucleation at constant chemical potential. Free energy surfaces, obtained by means of metadynamics simulations, relative to the nucleation
of NaCl crystals from solution. The two order parameters SO and SH′ provide a measure of the crystalline order and the hydration number of Na+ ions, respectively. (a)
NVT ensemble. (b) Constant chemical potential via the CμMD method discussed in Ref. 101. (c) Same as (b) but at higher supersaturation. Note that the conventional NVT
setup fails to identify the basin corresponding to the crystalline phase. Reprinted with permission from Karmakar et al., J. Chem. Theory Comput. 15, 6923–6930 (2019).
Copyright 2019, American Chemical Society.

phase when performing simulations within the NVT ensemble. It is
important to note, however, that solute depletion is not a preroga-
tive of simulations and it can occur in actual nucleation processes as
well. Depleted regions around the growing crystalline nuclei are also
present in reality: they might be replenished quickly enough to con-
form to the CNT assumption of a constant background supersatura-
tion, but they might also be replenished very slowly (depending on,
e.g., the diffusivity of the solute)—a situation closer to simulations
but not consistent with CNT.

A number of different approaches to circumvent this long-
standing issue have been proposed.4 As straightforward as it might
sound, simply increasing the size of the simulation box might be a
viable option. For instance, Zimmermann et al.9 provided practical
guidelines as to how big the simulation box should be in order to
avoid solute depletion effects when using seeded MD simulations to
extract crystal nucleation rates. In particular, the box should be large
enough to (i) contain enough solute to form a critical nucleus and (ii)
allow, once a critical nucleus has formed, the solution to remain in a
supersaturated state. In practice, simulations with fixed numbers of
solute particles must be much larger than these lower bounds to be
representative of nucleation in a system, which can exchange solute
with its surrounding bulk environment to replenish concentration
in the vicinity of the nucleus. An alternative is to use analytical cor-
rections to the free energy surfaces (to be used as staring points in
order to estimate J) obtained via “closed” simulations (e.g., NVT
or NPT ensembles), as exemplified by the seminal work of Agarwal
and Peters.17 In 2016, Salvalaglio et al. computed J (relative to the

condensation of liquid droplets from vapor as opposed to crystal
nucleation) for small systems using infrequent metadynamics86 and
applying a bespoke analytical correction.42 Their results have been
very recently validated by Bal.88

More sophisticated methodologies often seek to modify the
computational setup itself. Recent advances in this context include
the work of Liu et al.,97 which harnesses the so-called string method
in collective variables (SMCV98) to work in the osmotic ensemble
(N liquid, μcrystal, P, T). This is an intriguing thermodynamic ensem-
ble, which, applied to crystal nucleation, seeks to conserve the num-
ber of particles in the liquid phase N liquid as well as the chemical
potential of the crystalline phase μcrystal, in addition to temperature
and pressure. However, it has to be said that, to our knowledge,
the SMCV method has never been used to compute J directly so
far—albeit it can be used to compare the relative nucleation rate of
two different crystal polymorphs98 (a very useful feature).

Another approach is to build on multiscale methods, such as
the adaptive resolution simulation (AdResS) scheme pioneered by
Wang et al.99 In this case, the system is divided into smoothly
connected regions where atoms/particles/molecules move from an
atomistic to a coarse-grained description. In doing so, the bal-
ance of the different degrees of freedom involved with the atom-
istic and coarse-grained regions allows one to work in what
is effectively a grand canonical ensemble (μ, V, T). The latest
development of this approach can be found in Ref. 100, but its
potential application to the actual calculation of J remains to be
explored.
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Crystal nucleation rates have been instead recently computed,
once more in the case of NaCl, by Karmakar et al.101 using a vari-
ant of the constant chemical potential molecular dynamics (CμMD)
method developed by Perego et al.102 In this case, the underlying
framework is that of well-tempered metadynamics,103 which allows
us to obtained free energy surfaces, such as those illustrated in
Fig. 4. In stark contrast with the NVT scenario depicted in Fig. 4,
the latest modification of the CμMD method correctly identifies
the free energy basing corresponding to the emerging crystalline
phase, as reported in Figs. 4(b) and 4(c)—where the supersatura-
tion has been purposefully increased so as to highlight the stabil-
ity of the crystal. It is also worth noting that a modification of the
original CμMD approach, which should be able to lower the compu-
tational cost of the methodology, has recently been put forward by
Chen and Ren.104

D. Microscopic kinetics
Solute depletion represents one limitation of attempting to

approximate an open system (coupled to its surrounding bulk par-
ent phase) with a closed simulation. As well as exchange of particles
with its surroundings, a real system can also exchange heat. This is
relevant to simulation of nucleation from the melt as well as from
solution.

In molecular dynamics simulations, exchange of heat with
implicit surroundings is accomplished by augmenting equations of
motion with stochastic and dissipative forces or by augmenting
the system Hamiltonian with additional degrees of freedom, which
accurately mimic the effect of coupling to a heat bath for the pur-
poses of sampling. The resulting microscopic dynamics are how-
ever entirely fictitious. It is common to “thermostat” all degrees of
freedom in this way.

Consider, for example, a growing nucleus. As the parent phase
transforms into a crystal, latent heat is released at the interface. In
a standard molecular dynamics simulation, this heat is immediately
removed via the thermostat on a (typically) short timescale deter-
mined by the thermostat coupling parameter such that the temper-
ature of the system remains both uniform and constant through-
out the simulation. Similarly, a shrinking crystal will absorb heat
from the parent phase, which is then rapidly replenished via the
thermostat.

Thermostatted molecular dynamics simulations of this kind are
entirely appropriate to the calculations of the free energy barrier to
nucleation within CNT. The ensemble of nuclei which have size n is
assumed within CNT to contain both shrinking and growing mem-
bers such that the net flow of heat between nuclei and surroundings
is zero, as is the case for an ensemble of configurations sampled via
a simulation in which all degrees of freedom are coupled to a ther-
mostat. This does, however, imply that techniques which infer the
free energy gradient from the average dynamics of the nucleus size
metric at each n54 must sample over “swarms” of trajectories which
contain both growing and shrinking nuclei.

However, for “brute force” or rare event methods, it is not
immediately clear that thermostatting all degrees of system is the
appropriate choice. Consider again a growing nucleus releasing
heat into its immediate surroundings. In a real/open system, this
heat must be transported away from the nucleus before reach-
ing the implicit heat bath represented by the surrounding bulk

parent phase. This may occur on a timescale slower than the
growth rate of the nucleus, meaning that subsequent additions to
the nucleus take place at an elevated local kinetic temperature.
This entirely physical effect would not be captured via a simula-
tion in which a thermostat is applied globally. This has been dis-
cussed in the context of crystal growth at planar ice/water inter-
faces105 as an explanation for lower growth rates when compared to
experiment but not explored quantitatively in simulations of nucle-
ation to our knowledge. This is most likely to be most relevant
at strong supercooling where rapid crystal growth is hindered by
the limited speed at which heat can be transported away from the
interface.

Within CNT, the rate of attachment to a critical nucleus
appears in the exponential prefactor. The use of a global thermostat
is therefore unlikely to have an impact on nucleation rates calcu-
lated from simulation in the case of freezing from the melt where
uncertainties typically span several orders of magnitude.

In the case of nucleation from solution, the (additional) analo-
gous problem is the transport of solute to/from the nucleus. Indeed
simulating with a constant number of solute particles (as is com-
mon) is analogous to having no thermostat at all. A growing nucleus
will deplete the surrounding region of solute, creating a region of
effective lower supersaturation, which, in turn, will necessitate a
larger critical nucleus. The crystal can grow only until the surround-
ing region is no longer supersaturated with respect to the growing
phase and an equilibrium is reached, preventing the critical nucleus
size from ever being reached, a much more serious problem. In fact,
one could argue that these limitations in terms of transport affect
simulations of nucleation in a very similar fashion to what hap-
pens when constraining the number of particles in the system (see
Sec. III C).

As discussed above, implementing grand canonical molecular
dynamics simulations is increasingly feasible but still unusual. With
the sole exception of Ref. 102, there has been (to our knowledge) no
study of how the location of the insertion/removal region can impact
upon growth rates. Ideally, this should be optimized in terms of dis-
tance from the nucleus and insertion/removal frequency such that
the diffusive kinetics of solute movement into and out of the sim-
ulated areas are accurately captured. For example, a solute/solvent
force field that accurately captures the solute diffusion coefficient
plus insertion sufficiently far from the nucleus such any memory of
the insertion position/orientation of the solute is lost before it can be
incorporated into the nucleus. As with the precise details of the ther-
mostat implementation, this is unlikely to have a major impact on
calculated nucleation rates due to the dominance of the exponential
term.

In context of Monte Carlo simulations of nucleation in simple
lattice models, there has been some investigation into how micro-
scopic kinetics impacts the dynamics of the order parameter or col-
lective variable used to characterize progress along the nucleation
process, typically the cluster size. Kuipers and Barkema106 explored
the usual assumption that a collective variable or order parame-
ter (e.g., nucleus size) evolves according to Markovian dynamics.
This appears to be a good approximation in the case where inser-
tion or removal of lattice gas particles can occur at any position
(including directly at the cluster boundary). However, a choice more
appropriate to modeling solute precipitation on a lattice is to
use Kawasaki-type local exchange moves107 which capture mass
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transport to/from the nucleus rather than instantaneous inser-
tion/removal. Here, a simple Markovian model was found to be less
than optimal.

Similarly, in Ref. 108, it is shown that the quality of fit to a
Markovian model of nucleus size evolution is significantly worse
when using diffusive microscopic kinetics instead of allowing parti-
cles within or at the boundary of a nucleus to be exchanged directly
with a reservoir without including transport. This is clearly very rel-
evant when dealing with seeded simulations. When inferring free
energy gradients from nucleus size dynamics by fitting a Marko-
vian model, this may lead to substantial sources of error. In the
extreme case, nucleation which is diffusion limited implies no sep-
aration of timescales between the dynamics of solute particles and
the dynamics of the nucleus size coordinate. In such cases, calcula-
tions of nucleation rates based on dynamics of that collective coor-
dinate on a free energy landscape are inappropriate and would lead
to potentially meaningless results.

We note here that even though a physical choice of micro-
scopic kinetics may invalidate the assumption that the dynam-
ics of reaction coordinate are Markovian, this does not necessi-
tate that a Markovian model (such as that implied by CNT) is
incapable of correctly capturing the nucleation rate, provided the
thermodynamic assumptions of CNT are satisfied. In other con-
texts,109 it has been established that it must be possible to cor-
rectly predict rates from a Markovian model of the reaction coor-
dinate dynamics (even if those dynamics are not Markovian), pro-
vided the reaction coordinate is chosen to be the committor. See
Sec. III F for further discussion on optimization of the reaction
coordinate, the committor, and its relationship to the nucleus
size.

E. Classical nucleation theory
The known limitations of CNT are many and they have been

reviewed extensively elsewhere (see, e.g., Refs. 3, 12, and 13 for
some recent perspectives). However, it is important to stress that
new issues related to CNT continue to appear as the community
pushes the boundary of atomistic simulations to compute J for either
more complex systems or employing novel enhanced sampling tech-
niques. Two-step or even multi-step nucleation, a scenario which is
not taken into account by the original formulation of CNT, is an
excellent example. In fact, in the last few years, both experiments
and simulations have reached a point where investigating complex
crystallization processes, such as biomineralization and the forma-
tion of hydrates, is now a possibility. These systems are famous for
their hotly debated mechanism of crystal nucleation and growth,
which involves multiple steps not necessarily well described by even
extended versions of CNT. Recent computational efforts in the field
of methane hydrates that seems to validate at least, in part, the usage
of CNT in that context include the work of Arjun and Bolhuis,48

who have used TIS to compute the homogeneous nucleation rate of
methane hydrate at relatively low supersaturations. They find that
the rate computed via TIS and the rate obtained via CNT (start-
ing from the free energy barrier they have calculated) are, in fact, in
good agreement, and they provide a thorough analysis of the uncer-
tainties associated with their estimates as well. Various extensions
to the original CNT framework have been put forward through the
years in order to deal with multi-step nucleation: the one pioneered

by Peters110 in 2011 has been recently used as the starting point to
describe the homogeneous nucleation of methane hydrates111 via
non-equilibrium MD.

Another issue with the potential of undermining one of the fun-
damental assumptions of CNT is the emergence of non-Markovian
dynamics. Through the lens of CNT, crystal nucleation can be
thought as the time evolution of the distribution of crystalline nuclei
within the system, which is usually described via the Fokker–Planck
equation as a Markovian (i.e., both stochastic and memory-less) pro-
cess. This assumption has been repeatedly questioned: for instance,
Kuipers and Barkema106 studied nucleation in the celebrated Izing
model and concluded that when dealing with realistic diffusive
dynamics, the Fokker–Plank equation cannot be used and non-
Markovian effects should somehow be incorporated instead. The
deviation of the nuclei from the spherical shape assumed by CNT
(another point of contention) is also blamed as a potential source of
uncertainty in the same work. A more recent example is the work
of Kuhnhold et al.,14 where the authors argue that CNT can, in
fact, be considered as a limiting case of a more general theory that
contains memory and out-of-equilibrium effects: broadly speaking,
nucleation cannot be considered, according to the authors, as either
a Markovian or a diffusive process. Related to the issue of non-
Markovian dynamics is the fact that the CNT expression for J refers
to a steady state nucleation rate, while in many cases, we observe
transient nucleation. This problem has been previously reviewed by,
e.g., Sear.112 Here, we mention a recent work by Myint et al.,113

focusing on the crystallization of ice VII at high pressure, where
some aspects of hydrodynamic have been incorporated in a theoret-
ical treatment that allows us to relax the assumption of steady-state
nucleation.

Very practical considerations about the reliability of CNT often
arise when applying the latter to estimate J starting from the basic
“ingredients,” that is, the kinetic prefactor and the free energy barrier
ΔG(n∗) associated with the critical nucleus size n∗. In turn, ΔG(n∗)
can be obtained from the free energy difference Δμ between crystal
and parent phase and the interfacial free energy γ between the two.
The seeded MD approach we have discussed in Sec. II A provides the
perfect platform for this discussion, as it usually relies on several esti-
mates of these ingredients, in some cases computed independently
and all of them affected by some degrees of uncertainty. An inter-
esting as well as fundamental question concerns the definition of n,
that is, the number of molecules within the crystalline nuclei. This
deceptively simple question is not easily answered, as it depends on
the choice of a specific order parameter—as we shall discuss in detail
in Sec. III F. In a recent work, Cheng et al.114 argued that the usage of
the solid–liquid Gibbs dividing surface is the one choice consistent
with the CNT formalism and put forward a methodology, based on
combining simulations of planar interfaces and three-dimensional
nuclei, to alleviate the uncertainty associated with the estimate of
ΔG(n∗) and, thus, of J. Another investigation that shed new light
onto the error propagation involved with the calculation of J in the
context of seeded MD is the work of Lifanov et al.108 on nucleation
in a multi-species lattice model. In addition to some consideration
of non-Markovian dynamics, the authors show that even when tak-
ing great care in computing Δμ, seeded MD cannot provide accurate
estimates of ΔG(n∗) in the low supersaturation regime. To provide
some context, the fact that ΔG(n∗) enters as an exponential in the
expression of J implies that a 43% error with respect to ΔG(n∗) can
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lead to an uncertainty of some ten orders of magnitudes in terms of
the nucleation rate.

The last aspect we believe it is worth discussing in the context
of CNT limitations is the assumption that the nuclei are supposed
to be perfectly spherical for every value of n. Note that while this
is a very common assumption, it is perfectly possible to rewrite
the relevant CNT expressions assuming nuclei shapes other than
spherical—albeit the situation becomes complicated if one wants to
allow for the occurrence of any arbitrary shape. Experimental mea-
surements, most prominently on colloidal systems, have demon-
strated that crystalline nuclei (particularly around the critical size
and/or within the early stages of the crystallization process) are
rarely spherical (see, e.g., Refs. 24 and 115). Simulations have been
key to show that deviations from the spherical shape are commonly
encountered across a much wider range of systems, particularly dur-
ing the early stages of the nucleation process as well as strong super-
cooling, where the critical nuclei are smaller and thus affected to
a greater extent by potential deviation from the spherical assump-
tion.116,117 This is relevant for seeded simulations of crystal nucle-
ation as well, as the crystalline seeds are usually built as spheri-
cal particles.59 Several modifications to CNT have been proposed
throughout the years to account for the deviation of the nuclei from a
spherical shape—see, e.g., the work of Prestipino et al.118,119 A more
recent example is provided by the work of Lutsko,120 which entirely
removes the need for the assumption about the spherical shape in
the first place. We also note here that in the context of nucleation
in the Ising model, well-established corrections for fluctuations in
nucleus shape as well as effective “surface energies” (a concept we
have already encountered in Sec. II B) for small nuclei have been
explicitly tested against FFS and umbrella sampling calculations and
found to be highly accurate.121

F. The choice of the order parameter
Every route toward the estimate of J involves the choice of an

order parameter, which is a mathematical object that allows us to
identify which atoms, molecules, or particles belong to the crys-
talline nuclei. In this work, we are going to adopt the nomenclature
of Peters,122 according to which a collective variable is any function
of the full phase space coordinates, an order parameter is a collective
variable that distinguishes the typical reactant and product configu-
rations, and the reaction coordinate (RC hereafter) is a special order
parameter that accurately quantifies dynamical progress from reac-
tant to product. It is important to stress that when dealing with
complex processes, such as crystal nucleation, the “true” RC might
very well be a high-dimensional set of variables that we have no hope
to identify correctly in their entirety. What we can do instead is to
coarse-grain the manifold of said variables into a handful of tractable
order parameters that we treat as our RC.

Many order parameters to identify crystalline nuclei build on
the famous work of Steinhardt et al.123 and are briefly reviewed in
Ref. 124. Topological order parameters, such as the permutation
invariant vector (PIV, reviewed in Ref. 125), represent a valid alter-
native, and of course, machine learning has found its way into this
particular facet of the field as well, not only to craft new order param-
eters (see, e.g., Refs. 126 and 127) but also to mine the extensive
portfolio of the existing ones in the attempt to pinpoint the com-
bination yielding the best accuracy.128 In a similar fashion, there

have been several attempts to automate the choice of the RC in the
last few years, albeit none—to our knowledge—applied to crystal
nucleation just yet. As an example, Krivov129 recently suggested an
adaptive optimization of a multivalued RC to be used in the context
of protein folding, a long-standing problem involving an incredibly
high-dimensional space. Another approach is that of the spectral gap
optimization of order parameters (SGOOP) put forward by Smith
et al.130 and applied to the study of the kinetics of chemical reac-
tions. It is important to note that these examples are still very much
relevant to our discussion because it is now clear that, in many cases,
we need to step away from the assumption that a single RC, such as
the size n of the largest crystalline nucleus within the system, would
be sufficient to provide a reliable estimate of J.

In fact, crystal nucleation has been traditionally thought of as a
rather one-dimensional problem, partially because n is the one and
only RC involved in the CNT framework. However, we now have
evidence that this is not the case. Concerning the nucleation of crys-
tal from supersaturated solutions, it is understood that, at the very
least, one needs to work in a two-dimensional RC space involving
the crystallinity as well as the local density (see, e.g., Ref. 131). When
it comes to nucleation from the supercooled liquid phase, Jungblut
and Dellago132 showed in the case of a LJ system that the choice
of n as the only RC can lead to substantial memory effects, which
invalidate the assumption of nucleation as a Markovian process and
result into vastly different nucleation rates (which they evaluate via
TIS). Interestingly, these effects are connected to relative abundance
of the two polymorphs, bcc and fcc, within the crystalline seed that
have been used to initiate the nucleation events. Indeed, polymor-
phism is a very common occurrence that is very difficult to assess
a priori, as even when the most stable crystal form is known, there is
no guarantee that the nucleation process would not involve interme-
diates characterized by different crystalline structures—again, the LJ
system provides a striking example in this sense (see e.g., Ref. 133),
or even result in a long-lived metastable bulk phase.

An additional layer of complexity has been recently brought to
light by Liang et al.,134 who have investigated the crystal nucleation
molybdenum via TIS simulations. The result of the committor prob-
ability P(pB∣n∗s ) they have computed for this system according to
the size of the crystalline nuclei alone, n∗s , is reported in Fig. 5(a).
Note that the committor distribution fails to yield a well-defined
narrow peak for P(pB∣n∗s ) = 0.5, thus demonstrating that this order
parameter does not provide an accurate enough approximation of
the reaction coordinate. In fact, not even introducing explicitly an
additional degree of freedom in the form of a crystallinity param-
eter (Qcl∗

6 , inspired by the work of Refs. 135 and 136), is sufficient
to improve the committor in this case. The authors had to resort
to a third order parameter, namely, a measure of the short-range
order (SRO2) in order to univocally determine which nuclei are
more or less likely to either dissolve into the liquid or proceed toward
post-critical sizes. This is illustrated in Fig. 5(b), where the commit-
tor probability P(pB∣n∗s , Qcl∗

6 , SRO2) is narrowly peaked around zero
and one for nuclei characterized by low and high values of SRO2,
respectively, thus indicating that only sufficiently compact nuclei are
likely to cross the free energy barrier associated with the nucleation
process.

The freezing of water to ice offers an especially challenging
testing ground when it comes to the choice of the reaction coor-
dinate. For instance, the work of Prestipino,137 focusing on the
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FIG. 5. Investigating the suitability of order parameters for crystal nucleation. (a) Committor distribution P(pB∣n∗s ), where n∗s corresponds to the number of atoms within the
largest crystalline nucleus. (b) Committor distributions P(pB∣n∗s , Qcl∗

6 , SRO2) for two sets of configurations characterized by the same n∗s , the same degree of crystallinity
(quantified by the order parameter Qcl∗

6 , inspired by the work of Refs. 135 and 136), but different short-range order SRO2. Reprinted from Liang et al., J. Chem. Phys. 152,
224504 (2020) with the permission of AIP Publishing LLC.

thermodynamic of crystal nucleation for a monoatomic water
model, shows that the quality of a reaction coordinate cannot
be assessed simply on the basis of the free energy barrier height
obtained. On the contrary, different choices of reaction coordinates
led to comparable free energy barriers but significantly different
fractions of hexagonal ice, cubic ice, and ice-0 as well within the
post-critical nuclei. Interestingly, in this particular case, the com-
mittor probabilities for the different reaction coordinates used are
quite similar to each other, which implies that none of them alone
captures the nucleation process accurately enough. In fact, it has
becoming apparent that in some cases, we really need to combine
multiple order parameters to obtain a sufficiently accurate reac-
tion coordinate. As an example, Niu et al.39 recently computed the
ice nucleation rate for the TIP4P/ice model by bringing together
a local order parameter with a linear combination of seven long-
range descriptors. Hence, the relevance of the above-mentioned
approaches aimed at learning, automating, and selecting multi-
dimensional degrees of freedom, as a potential avenue to lessen the
burden associated with the often employed trial-and-error approach
when building the reaction coordinate.

Quantifying the uncertainty associated with the choice of a par-
ticular reaction coordinate is also key. In principle, the use of reac-
tive flux calculations (e.g., TIS and FFS) compensates exactly for
potential inaccuracy in terms of the reaction coordinate,122 while
indirect estimates of J obtained via combining free energy profiles
with path-sampling methodologies can be corrected, under certain
assumptions, via, e.g., a committor analysis. The latter is a pop-
ular, albeit computationally extensive, option, and specific flavors
are available to identify and mitigate the inadequacy of the reac-
tion coordinate.122,138 Systems characterized by an inherently slow
dynamics, which we will discuss in greater detail in Sec. III G, are
especially challenging to deal with.109,139–141

An interesting aspect of relevance for the computational com-
munity is the availability of the implementation of the many order

parameters we use to construct reaction coordinates—not just as
standalone mathematical objects but also in conjunction with MD
and MC packages as well so that they can be leveraged to deploy the
enhanced sampling method of choice. In this context, several highly
collaborative projects have been born with the aim of facilitating the
access to a variety of order parameters for enhanced sampling sim-
ulations, such as the SSAGES142 suite or the PLUMED consortium
the authors are part of Ref. 23.

G. Slow dynamics
Finally, we discuss an assumption implicit in many path-

sampling techniques applied to the calculation of nucleation rates.
Forward Flux Sampling (FFS), in particular, has become the prin-
ciple workhorse of many rare event studies.10,143 Alternative tech-
niques such as transition interface sampling (TIS) are also used in
the context of nucleation44 but generally acknowledged to be some-
what more complex to implement. The aimless shooting approach
to path sampling is a third example,144 used in a number of nucle-
ation studies.122 The relationship between these methods has been
very recently summarized in an informative review by Bolhuis and
Swenson.45

Both FFS and TIS make the implicit assumption that the inter-
val between nucleation events is dominant in determining the nucle-
ation rate. The time taken for the event to occur is neglected. A
further practical consideration is that the time taken for the nucle-
ation event to occur must be tractably accessible to simulation. For
example, the path-sampling stage of an FFS calculation requires con-
tiguous sampling of trajectories which return to the boundary of
the quasi-stationary parent state from an initial configuration con-
taining a critical nucleus. TIS requires sampling of contiguous tra-
jectories which leave the parent state, form a critical nucleus, and
then return to the boundary of the parent state. Many such trajec-
tories must be sampled, in practice, limiting the application of these
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techniques to fast (but still rare) nucleation processes which occur
on nano-second timescales or less.

These two limitations have the effect of limiting the win-
dow of supercooling/supersaturation where FFS/TIS calculations
can be accurately applied. In freezing from the melt, as supercooling
increases, the interval between nucleation events becomes smaller,
while dynamics become slower. Eventually the assumption of fast
nucleation breaks down, as does our ability to sample appropriate
trajectories. Applying these methods in regimes where the dynamics
of nucleation are slow is likely to be fruitless.

One approach to obtaining nucleation rates in this regime is
to rely on CNT. The method of Knott et al.54 (discussed earlier)
pioneered the approach of fitting a free energy barrier to gradients
inferred from mean growth/shrinkage rates over swarms of short
trajectories, precisely to circumvent the need to simulate long trajec-
tories. Approaches which do not rely on CNT are also available. The
complete nucleation kinetics are subsequently reconstructed from a
Markov state model which uses these crossing rates. This relies on
a loss of memory between non-adjacent states, i.e., that the dynam-
ics of the reaction coordinate are Markovian on at least the broad
scale corresponding to crossings between windows. This assump-
tion may lead to correct rates even if the true dynamics are non-
Markovian, providing a suitably optimal choice of reaction coordi-
nate is made, i.e., the reaction coordinate is a good approximation of
the committor.109

A similar method is milestoning,145 which can be used to
inform both Markovian and non-Markovian models for the dynam-
ics of the RC from ensembles of trajectories which span part of the
nucleation process. In the context of nucleation, this has been com-
bined with MFEP methods to inform the placement of “milestones”
and used to compute rates of crystallization from the melt.146 How-
ever, simulations of nucleation in the slow dynamics regime remain
relatively unusual compared to studies in the regime where the
process is assumed rapid compared to the waiting time between
nucleation events.

IV. CONCLUSIONS AND FUTURE CHALLENGES
Molecular simulations have been playing an important role

in complementing the experimental insight into the kinetics of
crystal nucleation for decades. Recent advancements in the field
of enhanced sampling, together with the ever-increasing accuracy
of the available force fields as well as the unprecedented capabili-
ties of the current high performance computing facilities, all pro-
vide exciting new avenues for the computational scientist. At a time
when computing crystal nucleation rates is becoming a possibil-
ity for many research groups across the globe, we believe that it is
important to take stock of what we have learned in terms of the limi-
tations of our simulations, particularly in terms of the several aspects
that can contribute toward the uncertainty of our results. In this Per-
spective, we focused on atomistic simulations and discussed seven of
such aspects in the context of the recent literature.

We started by questioning whether the nucleation events we
need to investigate in order to extract the nucleation rate can, in
fact, be considered as “rare enough” to justify the assumption of a
steady-state nucleation rate. This is key to quantify the uncertainty
associated with our estimate of J via both unbiased and enhanced
sampling simulations, and we have highlighted a few methodologies

that are now available to do just that. Then, we moved onto finite
size effects, a long-standing issue that affects atomistic simulations
as a whole. These are exciting times for the community, as we are
now able to probe the emergence of these spurious effect in mod-
els containing up to several million atoms. Related to this aspect is
the problem of solute depletion, another practical aspect of molec-
ular simulations that we can now overcome by leveraging a diverse
portfolio of computational techniques.

Only within the last few years, the community has started to
assess the effect of thermostatting the entire simulation box while
simulating crystal nucleation—a choice that might play a role in
determining whether the nucleation process can be considered as
Markovian or not. Indeed, the emergence of non-Markovian RC
dynamics is a problematic aspect that clashes with some of the
assumptions CNT builds upon—and that we have discussed in
this Perspective together with some perhaps not entirely obvious
limitations of this theory.

It is impossible not to touch on the choice of the reaction
coordinate when it comes to computing crystal nucleation rates.
Much has been said in the past, but here we focused on the grow-
ing evidence that in many cases, we need to acknowledge the
complexity of the nucleation process and construct very specific
reaction coordinates starting from a diverse portfolio of order
parameters. This is where, we believe, the rise of machine learn-
ing can contribute to further the current state of affairs, as a prime
tool to identify, select, and potentially even learn the most accu-
rate reaction coordinate available to us. We also argue, though,
that at this point in time, we are running out of excuses for avoid-
ing to validate our reaction coordinates, as we now have both
the theoretical tools and—in most cases—the computational power
as well.

Finally, we offer a perhaps provocative take on the usage of
path-sampling techniques, which are righteously becoming more
and more popular as the tool of the trade to compute crystal
nucleation rates but that still suffer from a number of limitations.

At this stage, the reader might think that our perspective is
painting a rather bleak picture: substantial inconsistencies between
experimental and simulated nucleation rate persists; investigating
realistic systems at conditions relevant to the experimental reality is,
more often than not, still computationally prohibitive; and, even by
using state-of-the-art methodologies, our estimates of J are likely to
be affected by a sizeable degree of uncertainty, accumulated through
a number of diverse aspects, only seven of which we have discussed
in some details here.

However, we believe that the field is in a very different, in fact,
much better spot than it was only a decade ago: this is because the
importance of quantifying uncertainty has now been acknowledged
across the board, with several research groups going back to the
basics and questioning the assumptions we have built our results
upon. Of course, this is an often painful process that is bound to
uncover some more problematic aspects related to our simulations,
but we argue that we should embrace the challenge and work toward
promoting the transparency as well as the reproducibility of our
work.

We also feel that the gap between the community work-
ing on the so-called model systems and those computational
scientists interested instead in more realistic system is quickly
narrowing, which, in turn, should facilitate knowledge exchange

J. Chem. Phys. 155, 040901 (2021); doi: 10.1063/5.0055248 155, 040901-13

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

in terms of both techniques and expertise. In addition, it is worth
pointing out that many of the issues we have addressed in here are
by no means exclusive to crystal nucleation. The occurrence of rare
events is ubiquitous in the natural sciences,147 and quantifying the
kinetics characterizing these processes is a fundamental open ques-
tion with reverberations across, e.g., climate science148,149 as well as
epidemiology.150,151

In summary, we hope we have managed with this Perspective
not only to highlight some problematic aspects but also to showcase
some of the excellent work that has recently been done to overcome
these challenges and break new ground. The field is moving forward
at a very fast pace, leveraging concepts righteously taken from other
disciplines—it is our duty to keep an eye on the accuracy of our
simulations as we embark in the next chapter of this long-standing
endeavor.
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APPENDIX: COMPUTATIONAL DETAILS

Details about the LJ calculations reported in Fig. 2. Simulations
were performed in the NPT ensemble using the LAMMPS MD pack-
age (version released June 5, 2019). The Lennard-Jones parameter
was implemented with a cutoff of 3.5σ and an associated tail cor-
rection. A periodic cubic box of 4000 liquid atoms was produced
by melting a face centered cubic crystal. A small amount of linear
quench was then applied to lower the system to the desired tempera-
ture before the simulation began. An isotropic pressure of p∗ = 5.68
was applied through the simulation using a chain of 5 thermostats
attached to a Hoover barostat of damping parameter 0.5t∗ with an
applied Martyna–Tobias–Klein correction.

Thermostatting was performed using a chain of five
Nosé–Hoover thermostats of damping coefficient 0.1t∗. The
size of the cluster was calculated using the ten Wolde q6 order
parameter135 as implemented in the molecular dynamics package
LAMMPS [we are aware of the issue with q6(n) in LAMMPS, but
errors from this source should be small by the time the critical size
is reached]. The system was observed over 5 000 000 time steps of
length t∗ = 0.002, with q6(n) being recorded every 100 time steps.

Simulations (258 for T∗ = 0.68; 224 for T∗ = 0.765; and 823
for T∗ = 0.8) were analyzed in Python by fitting a sigmoid curve to
the value of q6(n). If this never exceeded 2000, the simulation was
determined not to have crystallized. Shifted curves were created by
removing the time associated with the midpoint of the sigmoid curve
from the time steps of the simulations.

The survival probabilities were found by dividing the output of
simulations into five approximately equal-sized sets. The location of
the midpoints of the sigmoid curves were binned into 15 bins rang-
ing from t∗ = 0 to the maximum value of t∗ at which a midpoint was
recorded. The plotted values are the mean of the values for these five
sets, with the error bar corresponding to the error in the mean (stan-
dard deviation divided by the square root of the number of sets).
Exponentials of the form exp[−(Jt∗)α

], with α either allowed to
vary or constrained to 1, were fitted using scipy.optimize.curve_fit.
Bounds were imposed to ensure that a reasonable fit was given, with
details of these bounds available in the analysis code. For T∗ = 0.68,
all errors on points were 0, so errors were neglected. For T∗ = 0.8,
only the error on the initial point was 0, and for T∗ = 0.765, errors
on the first and last point were 0; in these cases, fitting was performed
on data points with associated errors, and data points with 0 error
were omitted.

Analysis and input scripts can be found on GitHub
(https://github.com/keb721/7DeadlySins).

DATA AVAILABILITY

The data we have used to put together Fig. 2 are available from
the corresponding author upon reasonable request.
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