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ABSTRACT: Recent advances in machine learning methods have
had a significant impact on protein structure prediction, but
accurate generation and characterization of protein-folding path-
ways remains intractable. Here, we demonstrate how protein
folding trajectories can be generated using a directed walk strategy
operating in the space defined by the residue-level contact-map.
This double-ended strategy views protein folding as a series of
discrete transitions between connected minima on the potential
energy surface. Subsequent reaction-path analysis for each
transition enables thermodynamic and kinetic characterization of each protein-folding path. We validate the protein-folding paths
generated by our discretized-walk strategy against direct molecular dynamics simulations for a series of model coarse-grained
proteins constructed from hydrophobic and polar residues. This comparison demonstrates that ranking discretized paths based on
the intermediate energy barriers provides a convenient route to identifying physically sensible folding ensembles. Importantly, by
using directed walks in the protein contact-map space, we circumvent several of the traditional challenges associated with protein-
folding studies, namely, long time scales required and the choice of a specific order parameter to drive the folding process. As such,
our approach offers a useful new route for studying the protein-folding problem.

■ INTRODUCTION
Proteins are polymeric biomolecules that underpin the
numerous physicochemical operations of biological cells.
Naturally occurring proteins fold robustly and reproducibly
to their “native state” (i.e., minimum Gibbs free energy
conformation), typically over millisecond-to-second time
scales.1 However, due to the extremely large number of
degrees-of-freedom, even for relatively small proteins with a
few tens of amino acid residues, the speed of protein folding is
considered to be paradoxical.2 As such, understanding (and,
ultimately, predicting) the folding mechanism for a given
protein stands as one of the most challenging problems in
biology.
Recently, a major breakthrough was made in protein

structure prediction by Alphafold2,3 which employed deep
learning strategies to predict native protein structures, as
demonstrated in the recent Critical Assessment for Structure
Prediction (CASP14) competition.4 However, while accurate
prediction of the final folded protein structure is an invaluable
tool in further understanding protein functionality in biological
systems, solely predicting the folded state does not offer
insights into the folding process itself. Importantly, the
thermodynamic and kinetic characteristics of protein folding
pathways, as well as the intermediate structures formed, can
offer key insights to understand protein folding dynamics, and
why folding might fail - as has been implicated in neuro-
degenerative diseases.5

Experimentally, it is extremely challenging to perform a
comprehensive study of full protein-folding pathways and their
intermediate structures, predominantly because typical folding
intermediates are short-lived relative to experimentally
accessible time scales for large biological systems. Therefore,
it is natural to consider computer simulations as an alternative
route to studying protein folding, offering a route to accessing
detailed, molecular-level insights into intermediate structures,
thermodynamics, and kinetic characteristics of the folding
ensemble for a given protein.
The most direct approach to modeling protein folding,

namely, molecular dynamics (MD) simulations, has been
previously used to study some small, fast-folding (e.g.,
millisecond time scale) proteins.6 Unfortunately, these direct
MD simulations often require specially designed high-perform-
ance computers that are typically not accessible for most
research groups. Even with abundant resources and computa-
tional time, many biologically important proteins are much
larger than those which have been directly modeled by MD to
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date and fold over longer time scales than currently accessible
on standard hardware. For example, the specially designed
supercomputer ANTON2 can perform MD simulations of the
ApoA1 protein for periods of 59.4 μs each day;7 this is an
impressive achievement, but the requisite specialized hardware
and software does not offer a generally accessible computa-
tional solution for MD simulations of protein folding.
As a result of the “rare event” challenges associated with

direct MD simulations of protein folding, many different
enhanced sampling computational methods have been
developed and employed. For example, successful attempts
have been made in accelerating MD simulations by modifying
the dynamics of the system to speed up jumps over large
activation-energy barriers between different states while
preserving their relative rate constants. Representative methods
include parallel-replica MD,8 hyperdynamics,9 and temper-
ature-accelerated MD.10 However, an inherent problem in
these methods is the “small barrier problem”,11 where the
accessible speed-up is limited by the fastest kinetic process,
such that these simulations can spend too long jumping
between relatively shallow minima on the PES.12 In the context
of protein folding, considering the rugged nature of the
Potential Energy Surface (PES),13 the assumption that the
time scales for jumping between different relevant states are
homogeneous is one that is not easy to justify.
Alternatively, one can instead tackle the protein-folding time

scale problem by sampling the transition path ensemble. Many
popular methods use this strategy and are not limited to
Transition Path Sampling (TPS),14 Forward Flux Sampling,15

and Transition Interface Sampling.16 The underlying idea of
these methods is to sample several paths between folded and
unfolded protein states using a Monte Carlo sampling
procedure to generate an ensemble of paths that can be
further analyzed for mechanistic and kinetic information. In
the context of protein folding, there are significant challenges
in applying TPS and its variants. For example, an initial path
needs to be provided as a starting point for further sampling,
which may be difficult to identify given the complexity of
protein folding. Second, and more importantly, TPS will still
suffer from rare event sampling problems in “path space”,
where a hop from one basin of folding paths to another is
computationally inaccessible due to the high degree of
correlation in the MC sampling of paths.17 In the context of
protein folding, where proteins can exhibit multiple folding
mechanics and pathways,18 this is an important drawback.
A further promising technique that does not suffer from the

disadvantages of either accelerated MD or TPS is discrete path
sampling (DPS).19 This utilizes an “on-the-fly” generated
database of local minima and transition states to generate
candidate pathways between two configurations of interest,
such as folded and unfolded protein structures. Rates of
transition between different minima can be evaluated using
standard transition-state theory (TST),20 and paths with the
lowest overall rates can be identified as being significant. The
major drawback of this method is that the space of possible
local minima, and consequently different paths, is huge,
especially when considered in the context of protein folding.
In this article, we introduce and validate a new approach to

generate ensembles of protein-folding paths and identify the
most physically relevant ones. The key idea underlining this
approach is to represent protein-folding trajectories in a
discretized representation in which folded and unfolded
protein configurations appear as clearly defined states. The

generation of protein-folding paths can then be viewed as a
problem in discrete optimization, namely identifying directed
walks and discrete sequences of transitions that lead from
unfolded to folded protein states (which can now be
determined with protein structure prediction methods such
as Alphafold23). Fortunately, in the case of proteins, it is
straightforward to identify a useful discretized space that
captures the folding trajectory characteristics. In particular, a
residue contact map (i.e., the 2D matrix summarizing whether
pairs of residues are in contact) is such a representation, since
it encodes the secondary and tertiary structure information on
a given protein configuration. Furthermore, the utility of a
contact-map as a discrete space of protein trajectories has been
successfully demonstrated in recent postanalysis of dynamical
behavior during protein folding,21 as well as a Markov State
Modeling Study where it was shown that structural grouping
based on contact maps corresponded well with kinetic
accessibility.22 This indicates that the contact map is a suitable
level of coarse-graining for protein folding and is thus a
promising representation to utilize in our approach. We also
note that if the study of a particular protein folding pathway
required a finer discrete representation, our framework can be
extended to account for this, provided there is a set of
elementary moves that can be associated with that
representation.
With a discrete representation of protein-folding paths

available in the form of residue-level contact maps, we are left
with two challenges: (i) generation of protein-folding
trajectories within the discrete contact-map space and (ii)
assessment and ranking of different discrete folding trajectories
with regard to their thermodynamic and kinetic characteristics.
Recently, in the context of chemical reaction network
exploration and catalysis, we have shown how the first of
these challenges can be addressed within a discrete
optimization task.23−25 In particular, our group’s double-
ended graph-driven sampling (GDS) approach25 employs a
discrete bonding-graph representation of a chemical reaction
system in order to drive exploration of reaction mechanisms
connecting predefined reactant and product configurations. In
this article, we build on the GDS approach to study protein
folding, by replacing the chemical-bond-based graph used in
GDS with a residue-level contact-map description of protein
structure. Specifically, we have expanded the scope of GDS to
generate sequences of contact-map transformations that
construct a direct-walk from a given initial protein structure
(i.e., an unfolded protein configuration) to a final target
structure (i.e., a folded configuration). As we show below,
trajectories generated in contact-map space can be sub-
sequently “back-transformed” into Cartesian protein config-
urations,25−27 enabling direct evaluation of the thermodynamic
and kinetic characteristics of each folding-step using standard
approaches in reaction-path analysis, such as the nudged elastic
band (NEB) method.28−30 Importantly, we note that the GDS
approach completely circumvents the well-known time scale
problems associated with direct MD simulations, and does not
require definition of collective variables to “drive” the folding
process. In fact, the only prerequisite is the ability to identify
the target folded structure by some suitable metric such as
radius-of-gyration, contact-map, or coordination number; the
flexibility in target definition is a strength of our approach that
is discussed later.
In this article, we validated the use of GDS for generating

reasonable pathways by comparing the proposed folding paths
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to those generated by direct MD simulations. Given the time
scales associated with protein folding, and the challenges with
direct MD simulations of protein-folding noted above, we
focus on simulations of so-called off-lattice “HP” protein
models comprising hydrophobic (H) and polar (P) residues.
For three model proteins of increasing size, we performed
detailed comparison of GDS-generated folding trajectories to
those available from MD simulations. Analysis using Frechet
distance metrics,31 trajectory alignment, and multidimensional
scaling32,33 clearly demonstrates that the set of GDS folding
trajectories is representative of the folding trajectories
generated by brute-force MD. Furthermore, we also show
that the physical feasibility of GDS-generated folding
trajectories can be directly assessed and ranked without the
need for comparison to a corresponding MD trajectory. This
opens the door to wider independent application of GDS to
study long time scale protein folding processes. Of course, the
GDS method proposed here is not without its own challenges,
notably computational expense due to NEB simulations and
“back transformation” from contact-maps to residue coor-
dinates, but we also suggest later how these might be
addressed.
Finally, we emphasize that the focus of this article is the

initial demonstration and validation of GDS as a new scheme
for generating protein-folding pathway ensembles; as such, we
do not explicitly seek to optimize our simulation approach or
related parameters, instead noting avenues for further work as
appropriate below. As described below, this validation hinges
on comparison to a MD-generated ensemble of folding paths.
As a result, we are implicitly limited to studying systems for
which we can reliably use MD to generate a large collection of
representative folding paths. This means that our validation
study here focuses on systems with up to N = 34 residues (or
beads); we have found that, for the protein model studied here,
reliable MD folding with larger proteins (e.g., N = 55)
becomes much more challenging. However, as shown below,
we find that GDS can easily generate and rank folding
ensembles for the proteins considered here, opening the door
to further applications to larger proteins and more accurate
force fields in future work.

■ THEORY
In this section, we describe our approach to contact-map-
driven generation of folding trajectories. First, we outline the
simple off-lattice HP model used to describe interactions
between residues in the proteins studied here. Next, we show
how our GDS method, previously used for chemical reaction
mechanism generation,25−27 can be adapted to generate
plausible pathways leading to a given folded structure. Finally,
we describe our approach to validating GDS-generated folding
paths. In particular, we show how to compare discrete GDS-
generated folding paths to folding trajectories obtained directly
by constant-temperature MD simulations. We also show how
we can rank the physical feasibility of GDS folding paths
without requiring reference to MD trajectories.
The two different methodological workflows compared here,

namely, MD and GDS, are illustrated schematically in Figure 1.
As discussed in the following sections, both methods begin
with an initially unfolded protein structure. Our key aim is to
generate protein-folding trajectories using both MD and GDS,
then compare the trajectories to validate the physical accuracy
of the folding ensemble obtained by GDS. In our MD
workflow (Figure 1a), we first generate a folding trajectory in

the canonical (NVT) ensemble, after which we trim the
trajectory once it reaches the target folded state (removing the
long-time part of the MD trajectory which does not contain
further information about the folding dynamics). As described
below, the MD trajectories generated in this way can
subsequently be compared to the GDS-generated trajectories.
However, we find that this comparison is typically “con-
taminated” by the thermal fluctuations of all residues (beads)
in the protein. To remove these artifacts, and to enable more
straightforward comparison to GDS, we generate MD folding-
intermediate structures by periodic geometry optimization of
MD snapshots. This transforms the MD trajectory (containing
structural changes due to both protein folding and thermal
fluctuations) into a set of configurations representing
conformational changes along a folding path connecting
discrete local PES minima. This is much more aligned to the
viewpoint of GDS, enabling more straightforward comparison.
Our GDS workflow follows a different path from the MD

simulation process (Figure 1b). Here, as described below, we
use GDS to generate a folding trajectory, represented as a
series of “hops” between discrete folding intermediates. NEB
calculations are subsequently performed for each trans-
formation connecting each pair of intermediates along a
GDS-generated folding pathway, providing thermodynamic
information about each candidate folding trajectory that can be
subsequently used to assess and rank different GDS folding
paths for physical validity (as described below).
Finally, the two different workflows to generate protein-

folding trajectories (MD and GDS) will ultimately be cross-
compared as a route to validating GDS. In particular, one
would expect that the “best” GDS folding paths are those that
most represent the ensemble of MD folding paths. Later, we
show how Frechet distance can be used to compared MD and
GDS trajectories (Figure 1), but we also demonstrate how
GDS can be used to generate and rank folding trajectories
using NEB-generated kinetic information alone, without
reference to MD trajectory data.

Figure 1. Schematic representation of two different workflows
employed in this article. (a) MD workflow, employing MD trajectory
generation, trajectory trimming, and geometry optimization of
periodic snapshots. (b) GDS workflow, combining GDS path
optimization, intermediate structure generation, and NEB MEP
calculations. As described below, the folding ensemble generated by
GDS can be compared and validated against MD based on Frechet
distance.31 The representation of the protein here is a hydrophobic−
polar representation, with red being hydrophobic and blue polar.
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All MD and GDS simulations in this article, as well as their
associated analysis, employed custom software written in
Fortran and Python with use of the Scipy34 library.
Protein Model Description. Throughout this article, we

employ the off-lattice HP model to describe the PES of a
folding protein. Here, each amino acid residue is defined as a
single “bead” (i.e., coarse-grained group) which is either
hydrophobic or polar. A sequence of such beads represents a
simple model of a protein. This same model has been
employed in previous studies of protein folding, particularly in
the context of global optimization,35,36 but also in the study of
protein folding.37

For our purposes, this simple model has the enormous
advantage of being extremely fast to evaluate both potential
energy and forces, while still containing the key features of
typical protein-folding energetic landscapes. As such, this
model provides a route toward validating our graph-driven
simulations against direct protein-folding trajectories, as
described below.
In all of the following discussion, we use a set of reduced

units:
• The mass of each bead is defined to be 1 mu (mass

unit).
• The unit of energy ϵ is defined such that the Lennard-

Jones well-depth (at equilibrium distance) for inter-
actions between hydrophobic residues is 1 ϵ.

• We use Å as our unit distance.
• Our time is therefore measured in units of

(mu)(Å)
.

In the off-lattice HP model employed here, the PES
comprises both intramolecular and intermolecular compo-
nents:

V V Vr r r( ) ( ) ( )intra inter= +

where r is the set of 3N Cartesian coordinates describing the
position of the N residues. The intramolecular component,
Vintra(r), is given by

V k r R kr( ) ( ) cos(2 )
b

n

b b

n

intra eq
2

b

=

where the first summation runs over all nb bonds in the protein
(formed by adjacent beads), and the second summation runs
over all nθ bond angles (formed by sequences of three adjacent
beads). This intramolecular PES ensures that consecutive
beads in the protein chain are held together with a harmonic
restraining potential with an equilibrium distance of Req = 3.8
Å and a force-constant of kb = 3.0 ϵ Å−2. Similarly, the bond-
angle-bending term (where kθ = 0.1 ϵ) serves to prevent the
protein artificially “crumpling” to a structure with nonphysical
radius-of-gyration. This bond-angle-bending potential is
typically a term of the form cos (θ); however, in our
simulations, we chose to modify this potential term to the form
cos (2θ) instead. This modification artificially “stiffens” the
minima of protein-folding intermediates, avoiding generation
of trivial pathways in which HP-model proteins fold through a
straightforward “collapse” mechanism and enabling our MD
and GDS simulations to sample a wider diversity of folding
pathways in order to perform a more comprehensive analysis
of our contact-map-driven folding scheme.
The intermolecular contribution to the protein PES

comprises is a Lennard-Jones potential term that acts on
non-nearest-neighbor residues:

V
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Here, the summation runs over non-nearest-neighbor residue
pairs, rij is the distance between residues i and j, and σ = 3.8 Å
(representing the effective average radius of each amino acid
residue). The factor cij is a function of the residue types, as
follows (with H for hydrophobic and P for polar):

c

c

c

1,

1
2

,

1
2

HH

HP

PP

=

=

=
(1)

The choice of the cij is clearly designed to reflect the expected
folding of the protein structure to obtain preferential packing
of hydrophobic residues, and to disfavor hydrophobic−polar
residue interactions.
Molecular Dynamics Simulations. For each protein

sequence studied below, we performed extensive MD
simulations to generate folding trajectories in the canonical
(NVT) ensemble. The MD folding trajectories are used below
to provide reference folding mechanisms, against which the
discretized folding trajectories generated by GDS can be
compared.
All MD simulations employed the standard velocity Verlet

algorithm for integration. The temperature was controlled
using an Andersen thermostat with the coupling constant set as
0.1,38 and the positions and momenta of the protein beads
were corrected to ensure zero overall linear and angular
momenta. A time step of Δt = 0.1 was used in all MD
simulations.
For each MD trajectory, we subsequently performed

geometry optimization of extracted configurations using the
Broyden−Fletcher−Goldfarb−Shanno (BFGS) algorithm.39,40

This transforms a MD trajectory, with its inherent thermal
fluctuations, into a more coarse-grained representation,
describing transport between different local PES minima
along the path to the folded structure. For the sequence of
local minima visited along each MD trajectory, we can
calculate the corresponding contact-map, therefore providing
a direct point-of-comparison between our discretized GDS
simulations and the MD trajectories (as described further
below).
Double-Ended Graph-Driven Sampling. As noted

above, GDS has been used previously to investigate the
reactive chemistry of several different systems, including
organometallic homogeneous catalysis for hydroformylation
reaction and formation of complex organic molecules in the
interstellar medium.23−27 We have recently reviewed the key
features of this approach in the context of chemical reaction
network generation;23 here, we focus on those aspects most
relevant to adapting this simulation strategy to sample
candidate protein-folding pathways.
In GDS, the key object of interest is the adjacency matrix

G(r) (or graph) describing the current bonding state of the
system at configuration r. In the context of previous
investigations of chemical reactions and catalysis, the adjacency
matrix simply describes the bonding between atoms in a binary
fashion (with no consideration of bond order). However, in
the context of protein folding, for an N-bead protein model, G
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is an N × N symmetric matrix that represents the residue
contact-map, describing whether or not a given pair of residues
(or beads) form an intermolecular close contact. As such, in
the current application to protein folding, the elements of G
are calculated for any configuration r as

G
r R

r R

1 if

0 if
ij

ij

ij

cut

cut
=

>

l
m
oooo
n
oooo (2)

where Rcut = 6 Å is the distance cutoff value that represents
typical inter-residue close contacts in folded off-lattice HP
model proteins (see Figure 3 for an MD verification of this),
and rij is the distance between beads i and j.
In GDS, the aim is to generate a directed walk in the

discretized space of the contact-map G(r) that is constructed
such that it ensures that a final target folded structure is
generated from a given input starting configuration. We begin
with input unfolded and target folded protein structures; the
generation of these is described below. For these initial and
final protein structures, the corresponding contact-maps (Gi

and Gf, respectively) can be straightforwardly calculated using
eq 2. Our GDS approach then proceeds to generate a sequence
of chemically sensible contact-map transformations that
transform Gi into a graph (or conformation) equivalent to
Gf. This sequence of contact-map changes can be viewed as a
discretized trajectory that connects the initial (unfolded)
protein to the final (folded) state. As described below,
postanalysis of these GDS folding paths enables ranking of
the feasibility of different folding mechanisms. In other words,
the combination of GDS path generation with energy-based
postprocessing provides an alternative route to studying
protein folding beyond MD-based schemes.
In terms of the matrices G, any contact-map change, referred

to here as the operation C, can be characterized by a sequence
of three integers, (k, m, Δ), where (k, m) are the indices of any
two residues in the protein (subject to |k − m| > 2 to avoid
steric clashes) and Δ = ±1 is the proposed change in the
contact-map matrix-element Gkm. For example, as shown in
Figure 2, contact-map changes (1, 2, +1) and (2, 3, +1) suggest

a sequence of changes to inter-residue contacts between
residues 1 and 2, then 2 and 3, respectively. As such, sequences
of contact-map operations C can straightforwardly represent
protein-folding trajectories.
Importantly, in the discretized space represented by the

contact-map G, any folding mechanism that transforms the
initial contact-map Gi into a target contact-map Gf can be

viewed as a sequence of individual contact-map trans-
formations. The goal of GDS is then to identify sequences of
operations [C1, C2, ..., Cn dr

] that definitively transform Gi into
Gf after nr reaction steps. To achieve this, we first note that
application of any nr contact-map changes (or “reactions”) to
the initial contact-map Gi generates a new graph, G̃ as follows:

G G C
i

n

i
i

1

r

= +
= (3)

Here, by definition, the update operation Ci = (ki, mi, Δi) acts
to modify the element Gkdim di

such that Gkdim di
→ Gk dim di

+ Δi.
The choice of nr acts as a regularization parameter in our

approach. We note that the larger the value of nr, the more
complexity we allow within our GDS-generated folding paths.
To find a suitable choice of nr in the simulations reported
below, we performed test simulations with large nr values
(typically of the order N2, for an N-bead HP protein model),
and gradually lowered nr to reduce the overall path-length
while still generating visually similar folding paths. The results
presented below, in comparing MD-generated folding path-
ways to those given by our GDS strategy, indicate that
appropriate nr values were selected in this way; however, we
note that an alternative GDS approach, in which nr is not fixed
at the outset but is instead treated as a variable parameter
within our optimization procedure, would also be worth
exploring for future work.
To identify discrete folding trajectories in contact-map space

we seek to identify sequences of nr operations, [C1, C2, ..., Cndr
],

that minimize the effective distance between the target contact-
map (Gf) and the contact-map generated by a proposed
sequence of transformations (G̃). In other words, we seeks to
identify contact-map changes C such that an optimization
function F is minimized, where

F d G G( , )g
f= (4)

and dg is a distance measure capturing the difference between
Gf and G̃. For example, in our previous work on reaction
discovery, we have used a simple element-wise comparison of
bonding graphs as an effective distance, defined as

d G GG G( , ) ( )g
f

i j

N

ij
f

ij
, 1

2= [ ]
=

However, this optimization function is not always a suitable
choice, especially in systems where the permutational
invariance of atoms or molecules is important. In such cases,
modification of F to account for permutational symmetry is
preferred.24

In this article, we introduce a further modified version of F
to account for the different target application in this case,
namely protein folding, compared to our previous work on
chemical reaction discovery. Here, we focus on characterizing
the similarity of two different contact-maps using the
hydrophobic coordination number, ϕ(G), defined as

G

N
G( )

i j i j( , ) (H,H) ,

(H,H)
=

(5)

where N(H,H) is the number of pairs of hydrophobic residues.
This can be used to calculate the effective distance between
two contact-maps as

Figure 2. Schematic representation of a two-step folding sequence
generated by GDS. Here, a representative protein, modeled as a string
of connected hydrophobic and polar “beads” (shown here in red and
blue), is folded using two contact-map changes, C1 = (1, 2, +1) and
C2 = (2, 3, +1), as described in the main text. In this way, a given
protein folding trajectory comprising nr contact-map changes can be
readily discretized as a collection of transformations [C1, C2, ..., Cn dr

].
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d G G G G( , ) ( ) ( )g
f f 2= [ ]

These definitions imply that contact-maps with the same
hydrophobic packing are treated the same, regardless of their
exact graph. This reflects the fact (observed in our MD
simulations below) that a given protein structure will fold to
one of a set of closely related structures that only differ through
small permutations of hydrophobic residues buried within the
core of folded protein structures. However, we emphasize that
the choice of the optimization function is somewhat open to
modification, depending on the simulation target. For example,
we could have equivalently used eq 4 with a distance metric
that only depends on the elements of the contact-maps, or we
could have employed a distance metric based on other
structural parameters such as radius-of-gyration. In fact, as
discussed below, the flexibility in the choice of F introduces
some interesting proposed future applications of GDS, such as
explicitly targeting formation of misfolded protein structures.
To identify sequences of contact-map changes [C1, C2, ...,

Cn dr
] that lead to generation of the folded protein structures, we

employ simulated annealing (SA). Here, the discrete space of
chosen operations {C} is searched using a standard SA
algorithm. At each iteration, a random update is made to the
sequence of operations [C1, C2, ..., Cndr

]. This update consists of
replacing (randomly) up to six different operations at a time.
Here, operations are randomly selected and replaced with a
new operation acting on a new pair of beads. Uniform
probability distributions are used for selection of operations
and bead-pairs to replace. If a given proposed change is not
consistent with the current contact-map (for example,
suggesting a trial move that seeks to form a new inter-residue
contact between beads that are already in contact), the move is
simply rejected and a new trial move is suggested. After
updating the contact-map operation list {C}, the new contact-
map G̃ is determined and the optimization function F (eq 4) is
updated. The new sequence of operations is then accepted or
rejected based upon the standard Metropolis criterion, where
the probability of acceptance is

P min 1, e F F( )MC new old= [ ]

with
k TMC

1

B MC
= , and TMC serves as a fictitious temperature

that is gradually lowered over the course of the SA iterations to
drive the optimization process. The final optimized sequence
of contact-map operations then represents a folding trajectory
in a discretized space.
It is important to note that this optimization procedure,

including evaluation of F, takes place entirely in the discrete
space of the contact-map G. As such, the optimization is
typically very fast (e.g., less than a minute on a standard
desktop computer), such that large numbers of folding
trajectories can be generated and ranked in order to build up
a picture of the variability of folding pathways for a given
protein. However, a significant computational burden is
incurred by the postprocessing analysis of the kinetic and
thermodynamic characteristics of each folding path, the first
step of which requires generation of “real-space” protein
structures. We now turn to describing this important step.
Transforming from Contact-Map Sequence to Resi-

due Coordinates. Following previous implementation of
GDS in studying chemical reactions, we use the concept of a
graph restraining potential (GRP) in order to generate

Cartesian-space conformations that directly correspond to
the contact-maps (or adjacency matrices) found in the
optimized GDS sequences. We note that each optimized
GDS trajectory is defined as a sequence of nr contact-map
updates, {C}. After each update, we can use the GRP method
described here to generate a “real-space” configuration of the
protein. Clearly, a sequence of nr such updates represents a
folding trajectory that can subsequently be postanalyzed to
reveal key thermodynamic and kinetic features, as discussed
below.
The GRP, labeled W(r, G), is an arbitrary function of both

residue coordinates and a target graph G. The key feature of
the GRP is that it should be minimized (ideally obtaining a
value of zero) only if the configuration r exactly reproduces the
target graph G. As such, given a target graph G and an initial
configuration, the coordinates r can be optimized under the
action of W(r, G) to generate a configuration that is consistent
with the target G. For GDS, which provides a sequence of nr
graphs representing a folding trajectory, sequential optimiza-
tion under W(r, G) will therefore generate a Cartesian-space
representation of the corresponding folding path.
In our previous work using GRPs to generate intermediate

chemical structures in catalytic cycles,26 we have found that
optimization on the GRP alone can result in creation of highly
distorted structures. To circumvent this problem, we propose
here a slightly modified version of this GRP approach. In
particular, to generate intermediate protein structures corre-
sponding to a particular contact-map given in a GDS
trajectory, we perform geometry optimization (using the
QuickMin algorithm41) on a PES that is the sum of both the
off-lattice HP model potential and the GRP:

V V Wr G r r G( , ) ( ) ( , )tot = +

Here, the GRP is given by a pairwise sum over residues:

W V r Gr G( , ) ( , )
j i

N

ij ijGRP=
>
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V r G

r r r r
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G
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(6)

Here, σ(x) is the logistic function, κ1 = 1 ϵ Å−2, κ2 = 6 ϵ, and γ
= 6 Å2. These values were chosen following some initial trial-
and-error geometry optimizations. A deep study on what
“optimal” parameters to use was avoided, due to the simple fact
it is unnecessary for a bench-marking exercise, provided the
method is shown to work. The parameters rmin and rmax are the
lower and upper thresholds for residue close-contacts, chosen
to be 4 and 6 Å, respectively, and r r r( )con

1
2 min max= + is the

midpoint inter-residue distance used as a representative target
value for contact-distances. Overall, eq 6 acts to enforce the
contact-map G on the coordinates r. The first (harmonic) term
acts to maintain contacts for which Gij = 1, whereas the second
(repulsive) term acts to keep apart residues with Gij = 0.
After structure optimization on Vtot(r, G), we proceed with

further geometry optimization on the off-lattice HP model PES
V(r) only. This results in a final optimized geometry for the
given folding intermediate structure defined through the
contact-map G. We add that cooperativity effects are implicitly
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included in our approach by adding the protein potential
energy function to the GRP when performing graph-to-
coordinate conversions. Our philosophy was that the GRP acts
to enforce certain contacts being made in intermediate
structures, but the interactions provided by the protein’s
potential energy surface then drives the optimized intermediate
structures to adopt minimum-energy configurations that
naturally account for the relevant cooperative effects. Applying
this optimization procedure to each of the intermediate
contact-maps generated along a GDS folding trajectory then
generates a sequence of nr intermediate structures which can
subsequently be used for further analysis of kinetic character-
istics; this is described in the next section.
Analysis of Folding Paths. For each of the nr reactions in

each GDS trajectory, the optimization on Vtot(r, G) described
above enables generation of Cartesian coordinates for the
“reactant” and “product” protein structures. In order to access
kinetic information (namely activation energy) for each
reaction, we subsequently performed climbing-image nudged
elastic band (CINEB) calculations.28−30 Here, we use the
image-dependent pair-potential (IDPP) method30 to generate
initial MEP approximations. The CINEB optimization is
performed using the QuickMin algorithm, with a target root-
mean-square convergence criteria of 5 × 10−4 on the
perpendicular forces along the CINEB path. All CINEB
calculations employed 5 images along the MEP; this choice is
motivated by the larger number of CINEB simulations
required to generate MEPs for all GDS trajectories.
To validate and quantify how close our GDS folding paths

are to those found by MD, we need a metric on the space of
trajectories. The choice of the metric is quite important,
because it must account for different time alignments of these
path (in the sense that different folding “events” may occur at
different points along GDS and MD trajectories), while also
satisfying the requirement of being insensitive to para-
metrizations such as MD time steps.
The discrete Frechet distance31 satisfies these requirements.

Consider two sequences of structures or geometries to be
compared (in this case, MD and GDS trajectories). We
consider all possible matches between these two sequences
that preserve the order of the events. We denote this set of
possible matches as Γ. Matchings belonging to Γ are more
clearly understood when considering the sequences (a0, a1)
and (b0, b1, b2) . The matching {(a0, b0), (a0, b1), (a1, b2)} ∈ Γ
is valid while {(a0, b0), (a1, b1), (a0, b2)} ∉ Γ is not, since we
go backward along the a0 sequence. The discrete Frechet
metric is then computed by finding the optimal matching, such
that maximum deviation (which is chosen as the distance
between conformations, see below) along the matched path is
minimized. In other words, for given sequences A = (an), B =
(bm), a matching can be thought of as a reparametrization of
the sequences to A′ = (andi

), B′ = (Bm di
) where mi+1 = mi or mi+1

= mi + 1 to preserve time-ordering. The discrete Frechet metric
is then

d A B d a b( , ) min max ( , )
i

n mF i i
= { }

(7)

where d is a suitable metric comparing individual structures.
The Frechet metric has been previously shown to be able to

capture differences and similarities in paths generated by
various MD codes.31 In our trajectories, the difference
d(an di

,bm di
) between conformations along trajectories is measured

as the root-mean-square deviation (RMSD) of the set of inter-

residue distances between two different conformations, thereby
avoiding the need for rotational and translational alignment of
protein structures.

■ APPLICATION, RESULTS, AND DISCUSSION
The central goal of this paper is to demonstrate that GDS can
generate an ensemble of physically sensible protein-folding
trajectories that can be used to further analyze thermodynamic
and kinetic characteristics. To achieve this goal, we must (i)
demonstrate that the GDS-generated paths are comparable to
folding paths generated by brute-force MD simulations, and
(ii) show how GDS-generated paths can be ranked to identify
the most relevant folding trajectories on the basis of physical
characteristics. The first target here provides a route to
validating the physical correctness of GDS-generated paths,
while the second target provides a route to ranking and
selecting the “most relevant” GDS folding paths based on the
characteristics of the paths alone (i.e., without requiring MD
reference trajectories for comparison).
Protein Folding with N = 13 Residues. To begin, we

present a detailed description of our MD and GDS results, as
well as their cross-validation, for an HP-model protein with N
= 13 residues. The particular sequence of hydrophobic (H)
and polar (P) residues chosen in this case corresponds to one
of the previous ly studied Fibonacci sequences:
HPPHPPHPHPPHP (or (HPP)2(HP)2PHP). This class of
HP proteins are defined recursively, where the nth Fibonacci
protein is defined as the polymer formed when attaching the (n
− 1)th Fibonacci protein to the end of the (n − 2)th one; the
first two sequences are defined simply to be H and P,
respectively. This class of sequences has been regularly studied
using simple protein models,35−37 and we adopt these
sequences here to enable comparison to this previous work.

Generation of MD Benchmark Data. We began by using
MD simulations to generated benchmark folding trajectories
against which GDS could be compared and validated. First, we
sought to identify both the target folded state and an
appropriate simulation temperature for modeling folding of
this N = 13 protein. The target folded state was required for
the subsequent GDS simulations, while an appropriate
temperature is required to generate MD folding trajectories
that visit well-defined sequences of local minima along the
folding path. For the simple model proteins studied here, high
temperatures are sufficient to quickly drive the folding process
to completion without trajectories spending significant
residence time in local minima along the folding path. This
contrasts with the typical “folding funnel” picture and prevents
adequate comparison to our GDS folding paths. Instead, the
MD simulation temperature must be chosen such that the
protein folds over an appropriate simulation time scale, but at
the same time spends sufficient time in local minima to enable
their clear identification and comparison to the intermediates
generated by GDS. We emphasize here that this requirement
on the MD folding trajectories is only a requirement for
validation of GDS paths; artificially “slowing down” the MD
folding dynamics enables more straightforward validation of
GDS folding trajectories.
To identify an appropriate MD simulation temperature, we

performed NVT MD simulations at temperatures of T = [0.1,
0.125, 0.175] reduced units. At each temperature, 480 MD
trajectories of total time t = 1000 (reduced units) were
performed, using a time step of 0.1 reduced time units. We
periodically calculated the average distance between all pairs of
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hydrophobic “beads” in the protein on each trajectory. From
prior analysis of MD folding trajectories, it was clear that
folded structures adopted conformations in which hydrophobic
beads packed into protein interior, with polar residues on the
exterior surface, as one would generally expect for these simple
HP model proteins. As such, a histogram of the distances
between hydrophobic beads would be expected to exhibit
different peaks, corresponding to different intermediates along
the protein folding path at different times. In the long-time
limit, the inter-hydrophobic bead distance corresponding to
the folded structure will become evident in these plots.
This expected behavior is confirmed in Figure 3, which

shows probability density of average inter-hydrophobic-residue
distances as a function of time and temperature. At the highest
temperature considered here (T = 0.175), the histograms at all
times show a broad distribution of hydrophobic-residue
distances with poorly defined peaks. Furthermore, the relative
changes over time are quite small, in the sense that the broad
distance distribution is observed at quite early simulation times
and remains similar throughout the rest of the simulation.
From visual analysis of the corresponding MD trajectories, it is
found that the peak at a distance ⟨rHH⟩ ≤ 6 represents the
folded protein conformation, with a dense core of hydrophobic
residues surrounded by exterior polar residues (also shown in
Figure 1). In this high-temperature trajectory, significant
probability density is found in this peak at even the shortest
time (t = 100), indicating that the folded state forms rapidly.
As such, in terms of comparing to GDS trajectories, where our
requirement is to have a set of well-defined intermediates
which are occupied as discrete states along the trajectory, this
high-temperature MD simulation is not appropriate for
benchmarking.
At the intermediate temperature T = 0.125, qualitative

differences are observed, with much better defined peaks,
demonstrating that the MD trajectories exhibit behavior more
akin to visiting discrete minima on the PES. However, even for
this lower temperature, it is found that the folded state can
again form early in the simulation, as demonstrated by the
significant peak at ⟨rHH⟩ ≤ 6 in Figure 3 for T = 0.125 and time

t = 100. Again, these simulations demonstrate that this
temperature is not appropriate for benchmarking GDS.
At the lowest temperature considered (T = 0.1 reduced

units, Figure 3), it is clear that the folding dynamics is
effectively slowed, but the folding state can still be successfully
and reliably generated. In fact, we find that 196 MD
trajectories (out of 480) at this temperature reached the
folded state (defined hereafter as structures with average inter-
hydrophobic-residue distance ⟨rHH⟩ ≤ 6). However, most
importantly from the point-of-view of benchmarking GDS
trajectories, we find that the folding dynamics at T = 0.1 are
representative of trajectories that visit different PES local
minima on the approach to the folded state, while also
exhibiting sufficient residence time in each to enable ready
identification and comparison to GDS. This is clear from the
fact that the peak representing the folded state at ⟨rHH⟩ ≤ 6
increases gradually over the course of the entire simulation
time, demonstrating that folded structures are formed over a
range of time scales (rather than the much faster folding time
scales observed for T = 0.175 and T = 0.125). Furthermore,
the appearance of different peaks with different ⟨rHH⟩
throughout the MD simulations at T = 0.1 further indicates
exploration of different minima on the PES on the path to the
folding state. Overall, therefore, we use MD simulations at T =
0.1 reduced units as benchmark data for validation of GDS in
this section.

Validation of GDS Trajectories. We now turn to describing
generation and validation of GDS trajectories. Here, we
performed 480 GDS simulations with a maximum of nr = 22
contact-map updates and fictitious temperature for optimiza-
tion starting at TMC = 250 reduced units and linearly decreased
to zero over the course of 105 Monte Carlo updates. We note
that this limit indirectly biases GDS toward sampling paths
with lower complexity, and can be adjusted to study more
exotic paths (which are more unlikely to occur). In total, 433
of the 480 paths ended at a protein structure with an average
inter-hydrophobic-residue distance rHH ≤ 6; these were
selected as paths for further analysis. Given that this system
is strongly characterized by the number of hydrophobic
residues in contact, we focus on using the hydrophobic

Figure 3. Time evolution of average inter-hydrophobic-residue distances at different temperatures (indicated the on right-hand side) and times
(indicated along top). Analysis of protein structures generated by MD suggest that conformations with average inter-hydrophobic distances ⟨rHH⟩
≤ 6 represent the folded state.
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coordination number ϕ(G) (eq 5) to represent different
configurations.
Figure 4 shows a side-by-side comparison of representative

folding trajectories obtained by MD (with local structure
optimization) and GDS. We note that, in terms of total
number of configurations, the MD trajectory is much longer
than the GDS trajectory. This is expected because GDS views
folding trajectories as a series of “hops” between graphs,
whereas MD trajectories can spend a significant time in a single
local minimum. In Figure 4, the MD and GDS trajectories have
been aligned using the Frechet distance metric. As a result, the
progress coordinate represents a sequence of aligned
conformations along the GDS and MD trajectories (rather
than a physical time). In the particular example of Figure 4,
both the MD and GDS trajectories exhibit two intermediate
states on the folding path, before reaching the final folded
state. Structures along the MD and GDS paths (insets, Figure
4) are not identical (and neither are they expected to be due to
the different methods of generating these paths) but
demonstrate structural similarities in regard to the packing of
the hydrophobic core. Ultimately, it is clear that both MD and
GDS converge to a folded structure with essentially identical
hydrophobic-residue coordination number; visualization dem-
onstrates the clear similarities of these folded states.
The most important question to address here is whether the

GDS folding trajectories are representative of the same folding
paths generated directly by NVT MD simulations; this
validation is the key goal of this article. To compare these
two different simulation approaches, Figure 5 presents a
comparison of GDS trajectories and MD folding trajectories in
a reduced-dimensional space. Here, we have used multidimen-
sional scaling (MDS)32,33 to project from the high-dimensional
space of MD and GDS trajectories onto two reduced-
dimensional coordinates. This projection is constructed such
that pairwise distances between points in the full-dimensional
space (i.e., entire trajectories) are preserved in the lower-
dimensional 2D projection. As noted in Figure 1, to enable
comparison of MD trajectories (which contain one config-
uration at each time-step along the trajectory) and GDS
folding paths (which typically contains far fewer intermediates
along the folding paths than a corresponding MD trajectory),

we employed a two-step process. First, every structure in each
MD trajectory was energy-minimized using the L-BFGS
algorithm; this has the effects of removing minor thermal
fluctuations and collapsing configurations onto the nearest
local PES minima. Second, the pairwise distance between any
pair of trajectories (either MD or GDS) was subsequently
calculated using the Frechet metric described above; this offers
a convenient comparison between different trajectories,
regardless of how many intermediate structures a given folding
pathway visits. Furthermore, we also note that the Frechet
metric represents a “time-ordered” comparison, such that
trajectories labeled with a high degree of similarity must visit
similar sets of intermediate structures in a similar order on the
path to the folded state.
Figure 5 shows the results of the MDS analysis for MD and

GDS folding trajectories. The MD simulations are represented
as a continuous probability distribution, obtained using kernel

Figure 4. Comparison of aligned configurations obtained from a representative MD and GDS trajectory. Here, the Frechet distance metric was
used to identify closely matching configurations along MD (blue) and GDS (red) trajectories. For the MD trajectories, this results in selection of
configurations that can undergo small fluctuations in coordination numbers (as shown in the fainter blue line). Local windowing over these
configurations removes these thermal conformational changes and makes comparison to the GDS configurations more straightforward. The
coordination number ϕ (eq 5) is shown for the aligned configurations. Both the MD and GDS trajectories in this case fold through two
intermediate states. The inset sequences of structures show configurations for states 1 and 2, as well as the final folded state, obtained from GDS
(upper) and MD (lower), respectively.

Figure 5. Multidimensional scaling (MDS) projection of GDS and
MD trajectories for N = 13 model protein. Pairwise distances between
entire trajectories are calculated using the Frechet distance. Kernel
density estimation was used to represent the MD trajectory
distribution, with each GDS trajectory represented as a single point,
colored and scaled proportionally to the locally averaged activation
barrier (see text for description).
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density estimation (KDE) based on the MDS projection
coordinates.40 This is done simply as a visual aid to better
understand the distribution of the GDS and MD trajectories.
Each GDS trajectory is represented as a single-point, colored
according to its maximum activation barrier (as determined by
CINEB calculations for all intermediate contact-map changes).
Importantly, we find that a significant number of the GDS
trajectories overlap with the MD density distribution -
demonstrating that GDS can indeed sample folding trajectories
that are representative of those generated by direct MD. In
addition, we note that GDS generates a much wider
distribution of folding trajectories than MD simulations. This
is expected to be the case because the GDS path-generation
procedure is not directly biased toward generating folding
paths with specified thermodynamic and/or kinetic character-
istics in the same way that MD simulations are. For example, in
the MD simulations, the impact of temperature is to bias the
sampled folding paths to those which contain energetic barriers
that are on the order of a few multiples of the available thermal
energy. However, in the case of GDS, no such implicit biasing
exists, leading to sampling of a broader range of folding paths.
Finally, as would be expected, we find that those GDS paths
with lower maximum activation energies (hence, overall
kinetically favored) overlap most closely with the MD-
generated trajectories, with GDS trajectories possessing higher
activation energy lying outside the main domain of the MD
density distribution.
From Figure 5, we can conclude that, based on the MDS

comparison using time-ordered Frechet distance, GDS can
indeed generate protein-folding trajectories which map onto
those that can be generated by direct MD simulations; this is
one of the main findings of this article. Furthermore, we note
that visualization of the MD and GDS trajectories demon-
strates mechanistic similarities in the folding paths obtained by
these different methods, as is also emphasized in Figure 4.
Independent Ranking of GDS Trajectories. Above, we have

demonstrated that GDS can generate protein-folding paths
that closely resemble those that are generated by direct MD
simulations. While this is satisfying, the comparison of GDS
and MD only serves the purpose of validation in this case. For
a more general protein-folding problem, it may actually be
impossible to generate a satisfactory folding trajectory using
MD, due to the well-known time scale challenge; in this case,
validation of GDS paths against MD trajectories would be
impossible. As such, it is crucial to be able to rank the physical
accuracy of different proposed GDS paths without reference to

benchmark MD trajectories. This would enable one to use GDS
to study protein-folding paths independently, without requir-
ing reference to MD trajectories. In this section, we discuss
how this GDS ranking can be achieved.
Our approach here is to define a suitable metric that can be

used to rank GDS folding paths without requiring reference to
MD trajectories. However, to ensure that this ranking is
physically sensible, we clearly demonstrate here that our
proposed GDS ranking successfully aligns with MD-based
predictions.
For the purposes of this discussion, we assume that we have

generated a large number of GDS trajectories that reach to the
target folded state. Furthermore, we assume that we have
successfully performed NEB refinement of all of the MEPs
connecting intermediates along the GDS paths. We then make
the simple assumption that the most relevant folding pathways
are those which have the lowest maximum activation energy
along the GDS trajectory. The clear basis of this is that the
largest barrier has the largest impact on the overall folding
kinetics, as well as the standard assumption that folding
trajectories would naturally be expected to follow the “path of
least resistance” in regard to intermediate energetic barriers.
The argument above suggests that a suitable measure for

ranking GDS is simply the highest energetic barrier, ΔEmax,
determined by NEB for all intermediate transitions along the
entire GDS trajectory. However, in practice, challenges
associated with NEB calculations can have a significant impact
if this straightforward ranking is used. In particular, poorly
converged NEB calculations, as well as slight differences in
conformations of transition end-points, can lead to quantita-
tively different ΔEmax for trajectories that appear, by other
measures (such as Frechet distance), to be similar.
Instead, we find that local averaging (or smoothing) over

closely related GDS trajectories serves to remove these errors
to provide a more meaningful ranking metric. In particular, for
a given GDS trajectory i, we calculate a locally averaged
maximum energy, ΔE̅imax, as

E
N

E1
ei

j

N

j
dmax

1

max /(2 )ij
2 2

=
= (8)

Here, ΔE̅imax, the locally averaged maximum barrier height for
GDS trajectory i, is given as a weighted-sum over the
maximum energetic barriers ΔEjmax for all N GDS trajectories.
The weighting function here is simply taken to be a Gaussian
function of the Frechet distance dij between trajectories i and j.

Figure 6. Plots demonstrating ranking of GDS paths for N = 13 protein model. (A) Correlation between locally averaged maximum energy barrier
ΔE̅max and locally averaged similarity to MD trajectories. As expected lower ΔE̅max correspond to GDS trajectories which are more similar to MD-
generated trajectories. (B) Distribution of similarity scores Si determined for all MD and GDS trajectories. (C) Distribution of similarity scores for
the 30 GDS paths with the lowest ΔE̅max.
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Equation 8 offers a simple ranking metric that can be
calculated for any GDS trajectory without reference to MD
simulations. This metric can be used to rank the plausibility of
different GDS folding paths. However, we also need to confirm
that this ranking metric is sufficient to accurately rank GDS
folding mechanisms. In other words, we need to confirm that
GDS trajectories that are flagged as highly ranked using the
ranking metric of eq 8 do indeed correlate closely with folding
trajectories generated by MD simulations.
To assess this correlation, Figure 6 plots the GDS ranking

metric E̅imax from eq 8 and a path-similarity score that
represents the similarity of GDS trajectories to MD
trajectories. We emphasize that the GDS path ranking of eq
8 does not rely on availability of MD simulation trajectories
(and so is applicable to examples when MD cannot
satisfactorily fold a protein within a given simulation time).
In particular, for any GDS trajectory i, we calculate a path-
similarity score as

S
N

1
ei

j

N
d

MD 1

/(2 )ij
MD 2 2

=
= (9)

where dij is the Frechet distance between GDS trajectory i and
MD trajectory j. As in the case of eq 8, the similarity score of
eq 9 represents a locally averaged comparison of each GDS
trajectory to the local neighborhood of MD trajectories. If a
given GDS trajectory has a large similarity score Si, this implies
that the GDS trajectory is similar to one or more MD
trajectories and hence represents a physically plausible folding
path.
If the GDS ranking of eq 8 is capable of successfully

identifying GDS trajectories that are most physically plausible
(in the sense that they are most similar to MD folding
trajectories), then we would expect to see a strong correlation
between ΔE̅imax and Si. Somewhat satisfyingly, this is exactly
what is observed in Figure 6a. We see a clear correlation
between ΔE̅imax and Si, with the better GDS trajectories with
lower ΔE̅imax corresponding the larger similarity scores Si. This
demonstrates that the ranking metric ΔE̅imax is capable of
identifying physically sensible GDS trajectories that would be
expected to match those generated by MD simulations. This is
an important conclusion; GDS simulations, combined with
ranking based on ΔE̅imax, can be used to generate MD-like
trajectories for further analysis, offering a new route to
studying long time scale processes such as protein folding.
One technical note here is the choice of the length scale, γ

(eqs 8 and 9). Here, we chose γ = 1 but also found that the
qualitative features of Figure 6a are quite insensitive to this
choice. We note that a robust alternative to NEB calculations
could make the locally averaging procedure redundant, as
discussed below.
While Figure 6A successfully demonstrates that “physically

plausible” GDS trajectories (i.e., in the sense of matching MD-
generated trajectories) can be generated and selected, Figure
6B,C further underlines this point. Here, we consider
computing the similarity score Si for both MD and GDS
trajectories to determine if the GDS trajectories selected based
on ΔE̅max have a systematically lower Si or not. In Figure 6B,
showing the distribution of Si for all MD and GDS trajectories,
we see that the MD trajectories exhibit high self-similarity (as
expected), with the GDS trajectories distributed over a wider
similarity range. However, in Figure 6C, we compare the
similarity distributions for MD trajectories to the distribution

obtained for the top 30 GDS trajectories when ranked
according to ΔE̅max. In this case, there is a very strong overlap
of highly ranked GDS trajectories and MD self-similarity. In
other words, Figure 6C further demonstrates that the GDS
trajectories with lower ΔE̅max look very similar to MD folding
trajectories.
To conclude this section, we have successfully demonstrated

that high-quality folding trajectories, representative of the
folding paths found by MD, can instead be generated by GDS
and identified using a simple ranking metric (eq 8).
Importantly, this ranking can be performed independently of
any MD simulations; in other words, GDS can be used to
study protein-folding paths without requiring MD reference
trajectories.
Protein Folding for N = 21 and N = 34 Residues. In the

section above, we have presented a detailed comparison of
GDS trajectories and MD folding paths, validating our GDS
approach and identifying a route to independently ranking
GDS trajectories without reference MD data. In this section,
we apply the same strategy to demonstrate applicability of
GDS to larger protein systems. Specifically, we repeat the
comparison of MD and GDS trajectories for larger N = 21 and
N = 34 protein sequences. These simulations again
demonstrate how GDS can be used for plausible folding
trajectory generation.
For the N = 21 and N = 34 proteins, the H/P sequences

were chosen to be

N (P(HP) ) (PHPPH) P21 2 2 2=

N (HPP) (HP) PHP(P(HP) ) (PHPPH) P34 2 2 2 2 2=

where subscripts indicate repetition of the indicated units. As
in the case of N = 13, these larger proteins are so-called
Fibonacci sequences that have been studied previously.
Following on from the discussion about MD trajectories
above, the same temperature assessment was performed for
both of the larger proteins. In each case, a temperature T =
0.125 reduced units was selected, leading to sufficiently “slow”
folding dynamics to enable straightforward comparison to
GDS. As in the case of the N = 13 protein, visual study of the
folding trajectories demonstrated that a protein conformation
with ⟨rHH⟩ ≤ 6 corresponded to a compact and stable folded
state.
All MD simulations for N = 21 were performed in the same

way as our previous N = 13 simulations. In total, 480 MD
trajectories were generated, of which 434 were found to fold
successfully. The rise in rate of successful folding in
comparison to N = 13 can be attributed to the increase of
temperature to T = 0.125. This was used because T = 0.1 MD
trajectories were found to be too slow in escaping intermediate
minima on the PES. For N = 34, we found that T = 0.125
resulted in appropriately slow dynamics; however, the MD
trajectories required ca. 10000 time steps (instead of ca. 1000
previously) to see enough folded trajectories. In total, 109 of
the 480 simulations resulted in folded trajectories for N = 21.
Due to the length of the trajectories, however, we chose every
third time step for computational tractability in further
analysis.
For N = 21, a total of 960 GDS simulations were performed,

with maximum reaction-length nr = 50. Out of these, we found
that 930 (97%) successfully generated protein-folding
trajectories. Similarly for N = 34, 858 out of 1440 GDS
simulations (60%) generated protein-folding trajectories with
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Figure 7. GDS and MD results for protein folding with N = 21 residues. (A) MDS for MD trajectories (represented as continuous density
distribution) and GDS trajectories (represented as points, colored according to locally averaged maximum barrier height). (B) Correlation between
similarity score Si and locally averaged maximum barrier ΔE̅max. (C) Similarity score distribution for MD trajectories (blue) and GDS trajectories
(red). (D) Similarity score distribution for MD trajectories (blue) and the 30 top-ranked GDS trajectories, as predicted using ΔE̅max.

Figure 8. GDS and MD results for protein folding with N = 34 residues. (A) MDS for MD trajectories (represented as continuous density
distribution) and GDS trajectories (represented as points, colored according to locally averaged maximum barrier height). (B) Correlation between
similarity score Si and locally averaged maximum barrier ΔE̅max. (C) Similarity score distribution for MD trajectories (blue) and GDS trajectories
(red). (D) Similarity score distribution for MD trajectories (blue) and the 30 top-ranked GDS trajectories, as predicted using ΔE̅max.
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nr = 50. The decrease in the success rate of GDS in finding
successful folding trajectories is clearly related to the
increasingly challenging optimization problem as N increases.
Improvements to our SA-based optimization would clearly be
expected to help here, although we note that, even for N = 34,
GDS can generate large numbers of folding trajectories without
further optimization.
Figure 7 compiles the same set of results as Figures 5 and 6,

but for the N = 21 protein; however, it is clear that the same
qualitative trends are observed for N = 21 as for N = 13. First,
in Figure 7A, MDS demonstrates that there is some overlap
between the GDS and MD trajectories. As in the N = 13 case,
many GDS trajectories overlap with the density distribution of
the MD trajectories, and it is generally found that those
overlapping GDS trajectories also demonstrate lower max-
imum-energy barriers (with higher maximum-energy barriers
sitting on the periphery of the MD distribution). Figure 7B
also demonstrates that our ranking criteria of eq 8 work for N
= 21 too; GDS trajectories with high similarity to MD
trajectories exhibit lower ΔE̅max. As above, this is further
confirmed in Figures 7C,D, demonstrating that the entire set of
GDS trajectories span a broad range of characteristics (or
similarities to MD), whereas the top-ranked GDS trajectories
according to ΔE̅max are clearly most similar to the MD
trajectory set.
Everything that is noted above for the case of N = 21 is

found to be equally true for the larger N = 34 protein, as
shown in Figure 8. As confirmed in Figure 8A, GDS
trajectories overlap significantly with the MD density
distribution after MDS, and Figure 8B confirms good
correlation between the similarity Si and the locally averaged
maximum barrier ΔE̅max. As in the case of N = 13 and N = 21,
Figures 8C,D also firmly demonstrates that GDS can generate
a broad range of folding paths, but the best-ranked paths
according to ΔE̅max are strongly similar to MD folding
trajectories.
To summarize, this section has demonstrated that our GDS

simulation approach, and the related ranking and postprocess-
ing analysis, is as equally applicable to larger proteins with N =
21 and N = 34 residues as it was to N = 13 proteins. Most
importantly for future applications, ranking GDS trajectories
based on simple measures such as ΔE̅max offers a route to
identifying an ensemble of “good” folding trajectories without
recourse to MD trajectories for validation.
Challenges in Further GDS Simulations. Finally, despite

the clear success in using GDS to generate protein-folding
ensembles above, it is worth highlighting a number of
outstanding methodological challenges that we have come
across in these simulations. First, it is clear that the current
implementation of GDS requires one to perform a large
number of NEB-type calculations for all of the intermediate
reactions generated for each GDS trajectory. These calcu-
lations are necessary to allow ranking of GDS coordinates
based on maximum activation energies. The computational
demands of these NEB calculations can be high, and clearly
increase as the length of GDS-generated paths is increased or
as more GDS paths are generated to improve sampling of the
folding ensemble. As such, it is clear that steps should be taken
to reduce the computational burden of the NEB postprocess-
ing; here, machine-learning (ML) strategies for predicting
activation energies given reactant and product configurations
may prove useful, as has been recently demonstrated.42−46

Second, as well as the required large number of NEB
calculations, we have found that NEB calculations can often fail
to sufficiently converge or can be unstable for some of the
intermediate protein conformational changes generated by
GDS. This is found to be particularly true for contact-map
changes for protein conformations that already possess quite
densely packed hydrophobic cores. As well as deploying ML
strategies to address this point, another option is to deploy
alternative MEP-finding routines that might be better suited
for such systems. Here, the growing-string method47−49 may
prove useful, given that this approach is less reliant on the
availability of an initial MEP guess in the same way that our
current IDPP-based implementation of NEB is.
Finally, it is worth noting that neither of these simulation

challenges is actually inherent to GDS, but we implicitly rely
on NEB-type calculations to obtain MEP information
characterizing the kinetics of different folding paths. As such,
seeking an optimal combination of GDS and postprocessing
strategies is of key importance and will be the subject of our
future work.

■ CONCLUSIONS
In this article, we have introduced a new contact-map-driven
approach to generating plausible protein folding trajectories.
Given a target folded structure, which may be characterized
either as a single specific conformation or through an auxiliary
function such as a target coordination number, our GDS
strategy can generate ensembles of pathways that lead from the
unfolded state to the target folded state through a series of
transitions between discrete PES minima. Beyond a function
defining similarity to the target folded state, our approach does
not require an “order parameter” or “driving coordinate”, and
circumvents the time scale problems associated with brute-
force MD simulations of protein folding. We emphasize that
this function is only evaluated for the final structure generated
by a proposed GDS folding path, in order to evaluate similarity
with the target folded state (irrespective of the pathway taken
to generate the final structure), representing a key advantage
over methods that utilize a reaction coordinate requiring some
a priori knowledge of the nature of the pathway(s) rather than
just the final state.
The focus of this article has been on two aspects of the GDS

approach. First, we have highlighted how we can validate the
“correctness” of the GDS-generated folding trajectories by
comparing, where possible, to the folding trajectories
generated by direct MD simulations for AB-model proteins.
By performing MDS analysis of the MD and GDS folding
trajectories, using the time-ordered Frechet metric as a
measure of the effective similarity of different folding paths,
we demonstrated that GDS can indeed generate folding
trajectories that are representative of those generated by direct
MD simulations. Second, we have shown how the quality, or
physical plausibility, of GDS paths can be ranked without
reference to benchmark MD trajectories. In particular, we have
suggested a simple metric that can be used to independently
rank GDS trajectories. We have shown that highly ranked GDS
trajectories, according to our energy-based-ranking metric,
correspond to similar folding paths as would be generated by
direct MD simulations. This is an important achievement,
indicating that GDS simulations can be used to generate
protein-folding ensembles and rank the physicality of different
folding paths.
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The validation performed here therefore opens the door to
further applications of GDS to problems in protein folding and,
more generally, self-assembly. As we have noted above,
important challenges to our approach remain, most notably
the efficient generation and characterization of MEPs
connecting intermediate structures generated along GDS
trajectories. We suggest that more refined approaches, such
as the growing-string method, will help in this and note that
there is the more general opportunity to deploy AI/ML as a
route to energy barrier prediction. Of course, the next step in
evolution of this strategy will be adaptation to and analysis of
folding paths for more realistic protein interaction models,
going beyond the simple AB-model. Following the validation
exercise performed here, we hope to report further such
developments in forthcoming work.
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