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ABSTRACT: We have recently shown how physically realizable
protein-folding pathways can be generated using directed walks in the
space of inter-residue contact-maps; combined with a back-trans-
formation to move from protein contact-maps to Cartesian
coordinates, we have demonstrated how this approach can generate
protein-folding trajectory ensembles without recourse to molecular
dynamics. In this article, we demonstrate that this framework can be
used to study a challenging protein-folding problem that is known to
exhibit two different folding paths which were previously identified
through molecular dynamics simulation at several different temper-
atures. From the viewpoint of protein-folding mechanism prediction,
this particular problem is extremely challenging to address, specifically
involving folding to an identical nontrivial compact native structure along distinct pathways defined by heterogeneous secondary
structural elements. Here, we show how our previously reported contact-map-based protein-folding strategy can be significantly
enhanced to enable accurate and robust prediction of heterogeneous folding paths by (i) introducing a novel topologically informed
metric for comparing two protein contact maps, (ii) reformulating our graph-represented folding path generation, and (iii)
introducing a new and more reliable structural back-mapping algorithm. These changes improve the reliability of generating
structurally sound folding intermediates and dramatically decrease the number of physically irrelevant folding intermediates
generated by our previous simulation strategy. Most importantly, we demonstrate how our enhanced folding algorithm can
successfully identify the alternative folding mechanisms of a multifolding-pathway protein, in line with direct molecular dynamics
simulations.

1. INTRODUCTION
Understanding how - and how quickly - a protein moves from
an unfolded state to the native folded structure remains a grand
challenge for computer simulations.1 Rapid advances in
machine-learning (ML) strategies, particularly the develop-
ment of AlphaFold2,2 have transformed the landscape in terms
of our ability to predict the f inal folded structures of proteins,
offering new routes to rapid in silico screening of drugs against
novel protein targets. However, as well as folded structure, the
dynamic sequence of events leading to formation of the native
state is equally important in forming a holistic picture of
protein functionality. For example, understanding protein
folding dynamics is central to ongoing attempts to address
diseases caused by protein misfolding and aggregation,3 while
long-lived protein-folding intermediates represent a largely
unexplored and often necessary source of new targets for
traditionally “undruggable” proteins.4 Moreover, modern
approaches to novel protein design would benefit from a
measure of fold-ability in order to ensure verifiable function of
any newly designed protein sequences.5

Previously,6 we have developed and demonstrated a new
simulation strategy that aims to generate a folding-pathway

ensemble without demanding extensive molecular dynamics
(MD) simulations or predefined order parameters. Here,
protein configurations are represented in the space spanned by
the binary inter-residue contact-map, and we employ a
simulated annealing (SA) optimization strategy to identify
sequences of contact-map updates that definitively lead to
formation of target folded states. For each directed-walk, we
subsequently employ a back-mapping procedure, previously
employed in the context of our research on automated
chemical reaction discovery,7−9 to generate folding intermedi-
ate structures in Cartesian space. Using the sequence of
intermediate structures, further analysis of the kinetics and
thermodynamics associated with each elementary step of each
folding sequence can be assessed using geometry optimization
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and nudged elastic band (NEB)10 calculations on an
appropriate potential energy surfaces (PES).

To date, we have shown how this procedure can be readily
used to fold model protein structures (described by an off-
lattice HP model11) with up to 34 residues. Perhaps most
importantly, we have also demonstrated that the folding
pathways generated by our graph-driven sampling (GDS)
strategy overlap with the folding ensemble generated by brute-
force MD simulations. Specifically, multidimensional scaling
(MDS) analysis based on a Frećhet distance between MD and
GDS folding trajectories demonstrated that our discretized
approach visits the same ensemble of intermediate folding
structures as MD trajectories in the canonical ensemble.

In this paper, we tackle a more challenging protein-folding
problem known to exhibit two distinct pathways - protein L/G.
This protein exhibits a nontrivial compact native structure and
folds through two distinct pathways that are associated with
distinct secondary structural changes. Problems of this sort are
of practical importance since it opens further doors to
understanding and targeting protein intermediates from
different mechanisms. The folding of protein L/G was
previously studied using extensive coarse grained (CG) MD
simulation using the so-called BLN PES.12,13 Despite the order
of magnitude speed up associated with CG MD, attempts by
Head-Gordon and co-workers to identify and characterize
these two pathways still required extensive MD simulations at
multiple temperatures to map out the free energy surface in
terms of a few predefined order parameters. Moreover, if one
were to use an all-atom model instead, this procedure would
likely be infeasible due to the time-scales involved.

In our approach, we avoid integrating the system dynamics
directly and therefore circumvent the associated timescale
limitations. As described below, our GDS scheme does not
scale with the time scale of the folding process, but rather with
the number of mechanisms associated with the folding process.
The generation of folding pathways in our GDS strategy is also
unaffected by the physical PES model being employed; instead,
the initial generation of folding paths in GDS is based solely on
contact-maps, only requiring a physical interaction model to
postevaluate the characteristics of each path once they have
been generated. Furthermore, our GDS strategy does not rely
on the a priori definition of order parameters, as is commonly
employed many other accelerated MD schemes.

However, before deploying GDS to study heterogeneous
protein-folding pathways identified for protein L/G, there
remain a number of outstanding challenges in optimizing our
directed-walk strategy as we seek to model the folding of larger,
more complex proteins. The purpose of this article is to report
on several algorithmic developments that dramatically improve
the efficiency and reliability of our contact-map-based strategy
to tackle the protein-folding problem; importantly, the
developments highlighted here also provide the foundation
to push toward applications to challenging atomistic
simulations of protein-folding in the near-future.

In this paper, we specifically focus on three improvements of
our GDS simulation approach. First, in seeking to identify the
folding-path ensemble for larger protein structures we have
found that the efficiency of our original directed-walk
optimization strategy decreases. As described below, our
current GDS approach represents folding pathways as
sequences of discrete contact-map events, with the restriction
that any single event represents either forming or breaking a
single contact between residues. As the size of target protein

structure increases, the number of events required to converge
on the final folded structure similarly increases, meaning that
increasingly long contact-map update sequences must be
sought during SA optimization. Furthermore, the number of
possible contact-map breaking or forming pairs that can be
selected for a given event grows significantly with the size of
the protein structure, and can lead to a large number of
rejected steps during SA optimization. In this article, we show
how this challenge can be addressed by modifying our
framework for updating a proposed sequence of contact-map
events.

A second challenge in GDS is finding a suitable metric to
quantify the differences between protein structures based only
on their contact-map representation, without the need for
(relatively expensive) structural back-mapping. In our previous
work using graph representations, we used the total number of
edge differences to discriminate between the final contact-map
generated by a given folding sequence and the target contact
map. However, there are alternative methods to discriminate
between two graphs that possess numerically preferable
properties, such as permutational invariance.7 Furthermore,
as discussed in this article, the number of contact differences
between two contact-maps is generally not a good measure of
structural “distance” when one additionally considers the back-
mapped (Cartesian space) structures. To overcome this
challenge, we also use this article to introduce a new
contact-map-based metric that is compatible with our GDS
approach for folding-path generation and better reflects
structural similarity in the coordinate representation.

A third and final challenge to our existing GDS strategy
arises in the back-mapping transformation from contact-maps
to three-dimensional protein structures. When applied to larger
protein structures, we found many of these transformations
failed to find a three-dimensional protein structure that
corresponded to a given contact map. We also note that the
back-transformation procedure can fail when the structural
restraints imposed by the contact-map are in conflict with each
other. As such, this article will examine different proposed
back-mapping strategies in order to determine a more effective
algorithm.

The remainder of this article is structured as follows. In the
Methods section, we briefly review our GDS approach, before
describing and justifying the updates made in seeking to tackle
more complex problems, such as identifying the heterogeneous
folding paths of the L/G protein. In the Results and Discussion
section, we explore how the three improvements to GDS
described above impact the reliability and efficiency of our
simulations and finally, in Conclusions, we highlight some
possible future applications that will be enabled by these new
developments.

2. METHODS
In this section, we begin by introducing the folding problem
for the L/G protein, following Head-Gordon and co-worker’s
CG MD studies. We then summarize our previous approach to
generating protein-folding pathways in contact-map space
using GDS. Subsequently, we highlight the three new
developments implemented in this article in order to improve
the robustness, reliability and efficiency of GDS as we seek to
study more complex protein-folding problems such as that
embodied by the L/G protein system.

2.1. Protein Model and BLN Potential. In their protein
design work, Head-Gordon and co-workers designed a CG
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represented protein that folded into a structure that shared an
identical folded topology with two Protein Domains: the B1
domain of protein L (PDB ID 2PTL) and the B1 domain of
protein G (PDB ID 2GB1).12 Proteins L and G, although
having identical folded structures, have different dominant
folding pathways; the CG-designed protein was shown to fold
through two pathways similar to the proteins L and G,
respectively. This protein, named protein L/G, exhibits a
nontrivial compact native structure with heterogeneous
secondary structure elements (Figure 1). Through a free-

energy histogram construction for protein L/G in the space of
five order parameters, they uncovered the existence of two
distinct mechanisms, corresponding to either protein L or G.
The primary goal of this article is to boost the efficiency and
robustness of our previous GDS strategy in order to enable the
identification of these two folding paths - crucially without the
need for direct MD simulations at different temperatures.

The CG potential employed here, and in the previous work
of Head-Gordon, is referred to hereafter as the BLN model.
Here, each amino-acid residue is represented as a single “bead”
which is classified as being Hydrophobic (B), Hydrophilic (L)
or Neutral (N). In addition, the BLN PES employs a

secondary characterization of every dihedral angle (namely
Helix [H], Extended Strand [E], Turn/Coil [T]), in order to
bias the PES to reproduce expected secondary structure
elements in the native structure.

In all of the following discussion, we use a set of reduced
units. Here, the mass of each bead is defined to be 1 mu (mass
unit), and the unit of energy ϵ is defined as the Lennard-Jones
well-depth (at equilibrium distance) for interactions between
hydrophobic residues. Furthermore, we employ Å as our
distance unit, and time is therefore measured in units
1 tu (time unit) Åmu= .

The BLN potential energy V (r) for a given configuration r
is given by

V k r k
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where (θ, ϕ) are the bond angles and dihedral angles,
respectively, and the first term is a sum over bonded-bead
distances. A strong restraint is placed on consecutive bead
pairwise distances, with kb = 115.6 ϵ Å−2 and σ = 3.8 Å. A
weaker restraint is placed on the angles, with kθ = 10 ϵ rad−2

and θ0 = 1.8326 rad. In addition, {A, B, C, S1, S2} are bead-
dependent parameters, where (A, B, C) are parametrized by
the assigned secondary structure element (according to the
target native structure), and (S1, S2) are determined according
to the classification of the pair of beads in question as follows:

A B C( , , )

(0, 0. 2, 0), for turn/coil (T)
dihedral;

( 1. 2, 1. 2, 1. 2), for helix (H) dihedral;

(0. 9, 1. 2, 0), for extended strand (E)
dihedral
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Here, (N, {B,L,N}) indicates interactions between N-labeled
beads and any other bead-types, whereas (L, {B,L}) similarly
represents interactions between L-type beads and either B- or
L-labeled beads. We note here that the parametrization of the
BLN model is defined by the native folded structure of the
particular protein under investigation. However, the availability
of previous MD simulations investigation of folding paths for
protein L/G using this PES offers an important opportunity to
employ GDS to study a multipathway folding system and drive
the further improvements of our approach that are described
below.

2.2. Initial GDS Methodology. Our motivation in
previously introducing GDS was to use the inter-residue
contact map (also interchangeably referred to here as the graph

Figure 1. Ribbon visualization of the B1 domain of protein G (PDB
2GB1). The ribbon is colored according to secondary structure,
illustrating the (red) α helix attached to (blue/green) beta hairpins,
with gray and green representing short loop regions.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00878
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00878?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00878?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00878?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00878?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00878?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of the system) as a discretization of protein structure space. In
the following, for an N-bead system, the contact-map G is an N
× N square matrix that simply defines whether or not two
residues in a protein structure are in close-contact according to
a predefined distance criteria, as follows:

G
r r1, if

0, otherwise
ij

ij
cl

mooo
n
ooo=

<

(2)

Here, rij is the distance between residues (i, j) in the protein
and rc is an appropriately chosen cutoff distance. Our cutoff
distance is typically chosen to be 8 Å, but a range of cutoffs
from 7 to 11 Å have shown to be optimal dependent on the
application.14,15 In our simulation approach, these differences
have little overall effect because the structural reconstruction
approach described later additionally employs an energy
minimization that inevitably washes out these small differences.

Graph representations of structures have been employed in
molecular rare event strategies with great success.16−18 More
specifically for proteins, a contact map encodes secondary and
tertiary structure information, which has proven to be a
promising representation in several protein conformational
dynamical applications.19,20 With this discretization, a protein-
folding pathway can be represented as a sequence of “hops”
between contact maps, where each consecutive hop represents
an elementary conformational transition; we refer to this path
representation as a graph sequence. Here, we briefly recount
our initial strategy to find such graph sequences that - when
back-transformed into a corresponding Cartesian-coordinate
representation - proposed physically viable folding-pathways.

Our initial methodology (Figure 2) optimized the graph
sequence [G0, G1,..., GN] by attempting to minimize a
predefined discriminator function defining the “distance”
between the final contact-map GN and a target contact-map
GT. Each graph-transition between Gi and Gi+1 belongs to a

predetermined set of transition moves (specifically, making a
new inter-residue contact or breaking an existing inter-residue
contact).

As described below, the discriminator function plays an
important role in our GDS approach. In our initial report, we
focused on determining folding paths for the off-lattice HP
model,11 which defines each protein residue as a single
hydrophobic or polar bead. This model was a simple
phenomenological PES that is commonly used to showcase
the hydrophobic collapse phenomena and, importantly,
enabled ready generation of direct MD folding pathways to
enable comparison to our graph-based approach. In the HP
model, the folded state is often not a single unique structure,
but rather any structure that shares the same set of
hydrophobic coordination numbers. Therefore, it made sense
in this initial work to use a discriminator function that
measured the difference in hydrophobic coordination number
between GN and GT; below, we explore a much more
transferable graph distance measure.

To identify graph sequences that fold correctly to the target
graph GT we re-express each graph such that Gi = Gi−1 + Ci,
where we refer to Ci as a graph-transition. The graph-transition
Ci is viewed as an operator that updates the current contact-
map Gi to give a new contact-map Gi+1. In our previous work,
each Ci is a triplet of integers, such that Ci = (k, m, Δ) where
(k, m) are two residue indices and Δ = ± 1 defines whether the
contact Gkm should be formed (Δ = +1) or broken (Δ = −1).
By construction, this definition of graph-transitions means that
consecutive graphs must be accessible from each other by one
single contact-map change.

For a given starting graph G0, application of a sequence of
graph-transitions [C1, C2,..., CN] results in a final contact-map
GN that may then be compared to the target graph GT. The
identification of successful folding paths in contact-map space
can then be cast as a discrete optimization problem in which
one seeks to find a sequence [C1, C2,..., CN] that yields GT. To
address this optimization challenge, we employ simulated
annealing (SA), where the graph-transitions Ci are randomly
modified at each SA iteration (subject to the condition Gij ∈
[0, 1]). The updates to Ci enable the search through graph-
sequence space, allowing identification of a set of contact-map
update sequences; in other words, repeated SA optimization
runs yield a range of protein-folding paths in contact-map
space. Finally, we note that the target optimization function
used in these previous SA runs was simply the discriminator
function of our final graph with the target graph d(GN, GT).

Once a given SA run has successfully converged on a folding
pathway, we subsequently back-transform the resulting graph
sequence into a Cartesian-space representation describing all
intermediate structures along the protein-folding path. This is
achieved by performing geometry optimization of the protein
structure under the action of a mixed PES built from the
protein interaction PES V (r) and an added biased potential
W(r, G), referred to as the graph restraining potential (GRP):

V V Wr G r r G( , ) ( ) ( , )total = + (3)

The GRP is a pairwise interaction acting on residues:

W V r Gr G( , ) ( , )
j i

N

ij ijGRP=
> (4)

where

Figure 2. Schematics of the GDS strategy for folding-path generation.
Starting from (a) an initially unfolded structure (with empty and filled
circles representing arbitrary residue “beads”) we (b) propose a series
of contact-map updates to generate a folding trajectory. The final
generated contact-map is (c) subsequently compared to the target
folded state. If further analysis is required, each intermediate contact-
map is (d) back-transformed to Cartesian-space coordinates, before
(e) further characterization of the folding pathway thermodynamics
and kinetics is performed.
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Here, σ(x) is the logistic function and κ1 = 1 ϵ Å−2, κ2 = 6 ϵ,
and γ = 6 Å2 are parameters determining the strength of the
restraints. These were previously selected to avoid numerical
or convergence issues in our initial work.6 The parameters rmin
and rmax are the lower and upper thresholds, respectively, for
residue close-contacts, and rcon = 1 2(rmin + rmax) is the
midpoint inter-residue distance used as a representative target
value for contact-distances. Overall, eq 5 acts to enforce the
contact-map G on the set of coordinates r, with the first term
acting to maintain contacts for which Gij = 1, and the second
term acting to keep apart residues with Gij = 0. As such,
geometry optimization under Vtotal(r, G) generates a protein
structure that is consistent with the input contact-map G.

After GRP back-mapping for an intermediate structure, a
final energy minimization is performed under the physical
interaction potential V (r) in order to ensure that a physical
intermediate is generated. Subsequently, NEB calculations are
performed between consecutive structures in the protein-
folding pathway. The energy barriers found from the NEB
calculations, along with knowledge of the relative energies of
intermediate protein structures, can then be used to assess the
thermodynamic and kinetic plausibility of each path. As we
demonstrated previously, this analysis ultimately reflects the
likelihood of finding similar pathways through brute force MD
simulations.

To verify our methodology, we used the Frećhet distance as
a metric on paths, which is designed to respect time order but
not necessarily the time-step size itself.21,22 The Frećhet
distances between the set of paths generated by GDS and a set
of trajectories obtained by direct MD simulations were used to
confirm that GDS paths that are “close” to MD paths did
indeed correspond to lower-energy folding pathways; in other
words, this analysis confirmed that ranking GDS paths based
on their energetic properties offers a route to identifying
physically plausible folding mechanisms of the same type as
would be generated by MD.

2.3. Challenges with the Initial Methodology.
Although our previous methodology was sufficient to generate
protein folding pathways showcasing the hydrophobic collapse
for model proteins with up to N = 34 residues, we have
identified three key problems that must be addressed before
moving forward to employ GDS in studying larger, more
complex proteins such as protein L/G. Here, we describe these
three challenges before implementing algorithmic updates to
address these.
2.3.1. Combinatorial Growth of Graph-Sequence Search

Space. First, we note that our initial restriction on graph-
sequence updates - specifically, requiring graph-transitions to
be single-contact formation/breaking events - will inevitably
require an increasingly long graph-sequence search space as the
size of the target protein increases. Furthermore, many protein
folding events may involve multiple cooperative contacts,23

rather than steps involving single inter-residue contact changes.
Additionally, when performing structural back-mapping as

described above, we commonly find that the contact-map
differences between adjacent folding intermediates (generated
after optimization on the physical interaction PES) are much
more extensive than single contact changes. Given the role of
cooperativity, as well as the inevitable appearance of
cooperative contact changes observed during structure back-
mapping, it would be expected to be advantageous to modify
GDS to enable graph-transitions that contain multiple contact
updates. As well as better representing the physical sequence of
contact updates along a folding path, we also expect that this
update would enable shorter overall graph-sequences to be
used in representing folding paths.

In our previous methodology, a graph-sequence update
during SA optimization replaced a graph-transition Ci with
another possible sequence update. However, when allowing for
higher-order contact-map changes, as suggested above in
accounting for cooperativity, the number of possible graph-
transitions begins to grow dramatically as the size of the target
protein grows. For example, allowing any graph-transition that

involves six residues simultaneously would require ( )2 2
6
2 15=

possible moves to be defined and available during SA
optimization. This in turn, for a protein with N residues,

would mean there could be up to ( )N
6 215× possible graph-

transitions options; as a result the search space explored during
SA optimization would grow dramatically with protein size.
Furthermore, for any given protein contact-map, it is inevitable
that only a subset of all possible contact-map updates would be
allowed based on the restraint Gij ∈ [0, 1]. If we expand our set
of possible graph-transitions to account for cooperativity, the
number of possible moves at each iteration will outgrow the
number of acceptable moves, further slowing down the search
process by demanding more SA iterations.

To summarize, single-contact graph updates, as employed in
our original GDS approach, have the disadvantage of poorly
capturing expected physical changes along protein folding
paths - yet expanding the set of allowed contact-map updates
to account for cooperativity inevitably impacts efficiency of
global optimization.
2.3.2. Poor Distance Metrics in Contact-Map Space. In

our initial implementation of GDS, we employed a simple
Hamming distance metric to assess the difference between the
contact-map produced by a graph-sequence, GN and the target
contact-map GT. The Hamming distance metric employed
was:

d G GG G( , )N

i j i
ij
N

ij
T

,

T=
> (6)

In other words, this metric simply counts the number of
different contact-map entries to give a measure of predicted
structural difference.

In practice, the use of this simple Hamming metric
introduces a significant challenge in interpreting true
“distances” between the protein structures represented by
contact maps, particularly once they undergo geometry
optimization on the true physical PES of the system. To
understand why, we consider a GDS calculation for a
minimalist model in Figure 3. In this example, we consider a
representative contact-map update in which two inter-residue
contacts are formed as a result of a single graph-transition.
However, as described above, the process of back-mapping and
geometry optimization can lead to very different protein
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structures when optimized in Cartesian coordinates on the
physical interaction PES, even though the original Hamming
metric of eq 6 would failed to identify any difference between
the expected structures. In other words, the Hamming metric is
not a good discriminator function to employ in our SA
simulations; protein structures that are predicted to be “close”
in contact-map space can instead very different once
transformed into Cartesian space.

A possible solution to this issue would be to perform a
graph-to-structure reconstruction and geometry optimization
at every single iteration of our SA runs, subsequently using a
“real-space” metric such as TM-Score24 as the basis for an
improved discriminator function. Unfortunately, this approach
would be too computationally demanding to employ during SA
updates; additionally, this strategy is not in the spirit of a high-
throughput folding-path generation algorithm.

An alternative route is to identify a new discriminator
function that only operates on contact-maps, but which better
reflects the dissimilarity one would find if comparing
reconstructed Cartesian-space protein structures.
2.3.3. Failed Structure Reconstruction and Nonphysical

Contact Maps. The graph representation of a protein structure
effectively defines a set of distance restraints that the Cartesian-
space protein structure must satisfy. Unfortunately, it is
possible (for example, as an output of a GDS SA optimization)
to generate a graph that does not correspond to a Cartesian
structure due to violation of geometric restraints like the
triangle inequality. Furthermore, even if a graph is defined such
that it corresponds to Cartesian-space structure without
violating geometric constraints, this does not guarantee that
back-transformation is straightforward; for example, when
using our artificial GRP (eq 5), we often encounter numerical
issues due to high-energy steric clashes within the structure.
Our previous work focused on relatively small structures,
where these issues did not manifest themselves frequently; for
larger protein structures, the frequency of failed structure
reconstruction becomes too high to ignore such artifacts.

We note that prior studies exist in the literature on verifying
whether or not a set of distance restraints is compatible with a
three-dimensional structure, or to sample structures that satisfy

a set of distance restraints.25−27 These methods are, in
principle, suitable for rejecting proposed moves in our GDS
simulations. However, such approaches would incur a heavy
computational cost for each restraint validation and structure
reconstruction - a problem that would only increase as larger
proteins and longer graph-sequences are studied.

Clearly, we want to avoid methods that add too much
computational overhead to our GDS SA protocol. Therefore,
we will reformulate our strategy to avoid repeated checks of
whether a proposed graph can be embedded in Cartesian
space. As described below, our preferred approach is to quickly
identify physical contact-maps that are minimally perturbed
from any identified nonphysical contact-map. We note that this
is a similar strategy as previously employed when mapping
between internal coordinates and Cartesian coordinates,28−30

seeking to optimize within a physically realizable space (i.e.,
Cartesian coordinates) rather than verify whether the set of
internal coordinates are internally incompatible.

2.4. Building a Better Algorithm. From the descriptions
above, it is clear that there remain important algorithmic
challenges that need to be addressed to transform our original
GDS approach into a strategy capable of modeling larger, more
realistic protein-folding problems. Here, we describe the new
developments that we propose to address these problems.
Later, we demonstrate the impact of these new capabilities in
identifying multiple folding paths for the L/G protein.
2.4.1. A Better Distance Metric: Shortest Contact Hops.

First, we propose a new metric to evaluate the similarity of
contact maps while also better representing structural similarity
in Cartesian-coordinate space.

To motivate this new metric, it is useful to first understand
how additional, nonlocal topological information can be
extracted from a contact map. Clearly, the (i, j) entry of a
contact map describes whether or not residues (i, j) are within
the 8 Å threshold. Now, suppose (A, B) are two structures to
be compared using their contact maps (GA, GB). We can also
assign distance matrices to (A, B), denoted (DA, DB), noting
that the distances satisfy the contact map restraints. Using the
distance matrices (DA, DB) we can clearly calculate similarity
measures that have been explored previously;31 however, we
note that the transformation to real-space distance matrices
introduces unacceptable computational burden to a GDS
search. Instead, we demand a similarity measure that is based
on contact maps alone,

To deliver this, we note that contact maps contain more
information that simple (i, j) inter-residue contacts, and
instead encode some information about the distance matrix. If
two residues are in contact, the inter-residue distance is clearly
known to be less than 8 Å; this provides additional information
on the distances between residues which are in contact with
the original bound pair. If a third residue is in contact with just
one of the contact-paired residues, it necessarily has a distance
in the range 8−16 Å with the other residue in the original
bound pair. As such, the number of intermediate contacts
between two residues offers an upper bound for the distance
between them. In this sense, the shortest path between any two
residues in the contact-map representation provides further
nonlocal information about the inter-residue distances. In
other words, comparing the topology of contact-maps,
particularly the connectivity, better informs the geometric
differences that would be expected in Cartesian-coordinate
space.

Figure 3. Both moves C1 and C2 correspond to only three contact-
map changes relative to the initial structure of G0. Furthermore, both
resulting structures from these different updates are determined to be
equidistant from the target folded structure GT. However, upon
inspection, the resulting structure from C2 is much closer to the target
structure, and involves a much more complex structural change than
C1. In fact, when back-mapped and geometry-optimized on the true
interaction PES, we might expect the C2-proposed structure to readily
form the target structure, whereas this would not necessarily be the
case for the structure generated by C1.
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To capture this nonlocal geometric information in a distance
metric based only on contact maps, we propose here a new
metric based on difference between the shortest hop matrices
for two contact maps, (SA, SB). Here, each (i, j) entry represent
the shortest number of contact-map hops required to traverse
from residue i to residue j. However, we also seek to ensure
that the distance function is more strongly weighted for
differences in short contacts, reflecting the primary importance
of inter-residue contacts in stabilizing protein structure; this a
common theme found in several previous protein structure
comparison methods.24,32 These considerations inspired the
following contact-map-based distance metric:

f
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S S

S S
G G( , )

1
max( , )
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i j

ij
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ij
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ij
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ij
BSCH 2

,

=
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where the denominator naturally offers lower weighting to
differences associated with larger pairwise distances. This
discriminator function can be shown to satisfy the triangle
inequality and can be readily evaluated directly from contact
maps (GA, GB) using methods such as Seidel’s algorithm.33 In
the following, we refer to this metric as the shortest-contact-
hop (SCH) metric.
2.4.2. Bit Flipping Updates. Our previous methodology

required prior definition of a set of graph-transitions that could
be used to construct folding paths during SA optimization. As
noted above, this approach leads to rapid growth of possible
elementary transitions in our GDS SA protocol if one seeks to
account for cooperative updates. To address this, we propose
here to instead perturb a given graph sequence by “bit flipping”
the contact map of one particular graph in a graph sequence
[G0, G1,..., GN] rather than change a particular graph-transition
Ci. Here, the key idea is that any of the large number of
possible contact-map changes that could be defined for a given
N-bead protein can be written as sums of single bit-flips (i.e.,
changes of a single contact-map entry). As such, rather than
using a large set of possible contact-map updates, we instead
employ single “bit flips”; as shown later, this provide benefits
such as improved SA acceptance probability and better folding-
space exploration, while keeping the graph-sequences the same
length.

In this framework, a perturbation to our graph sequence [G0,
G1,..., GN] is encoded in a triplet of integers (t, k, m) where t is
the selected graph to update, and (k, m) is the contact-map
entry being formed/broken (between the kth and mth
residue). In other words, the entry (k, m) is then flipped
from a 0 to 1 or vice versa. In this scheme, because every graph-
update is just a bit flip, we circumvent the combinatorial
growth associated with choosing a move from every possible
combination of N-bead updates.

This approach represents a similar trade-off to typical Monte
Carlo (MC) move proposals. By narrowing down the range of
possible Monte Carlo moves, it is generally more likely to
generate accepted moves but at the cost of demanding more
single moves to move across search-space. However, as
described above, the combinatorial growth in potential
contact-map updates for larger proteins and more-complex
contact-map updates means that the single bit flip framework is
much more efficient. Furthermore, as we show below, this
approach does indeed enable generation of physically realizable
folding paths.
2.4.3. Reconstruction with Nonphysical Contact-Map

Corrections. During SA run, as the sequence of graph moves

[G0, G1,..., GN] approaches the target GT, it is possible that the
intermediate graphs do not result in a successful back-
transformation and geometry optimization. In the worst
cases, the graphs can even encode nonphysical protein
structures, with contact restraints that simply cannot be
satisfied. As described above, instead of updating our SA
protocol to ensure generation of physically accessible graphs by
continually back-mapping to Cartesian space, we instead adopt
a scheme that seeks to correct nonphysical structures such that
the back-mapping to Cartesian space produces a “nearby”
physical protein structure.

Here, we introduce two steps that significantly improve the
stability of structure reconstruction, while at the same time
minimizing the number of nonphysical protein structures that
are generated. First, we modified the functional form of the
GRP used in structural back-mapping. In our original GRP,
parametrizing the repulsive force was often found to be difficult
because the combination of multiple structural restraints,
which may geometrically violate each other, can introduce
significant steric clashes that are difficult to resolve by simply
increasing the repulsive forces in the nonbonded part of the
GRP. Here, we propose to instead replace our original GRP
function with harmonic forces that only act when the required
structural constraints encoded in the contact map are violated,
as follows:
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In eq 8, we only require a single harmonic strength parameter,
k = 100 ϵ Å−2, which is chosen to be quite high to correctly
enforce structural constraints. We note that rcon is the
threshold distance at which inter-residue contacts are
considered to be formed, and rsteric = 2 Å is chosen to avoid
steric clashes between residues.

In addition to updating the functional form of the GRP, we
also modified the protein structure optimization strategy used
to generate Cartesian coordinates. Specifically, rather than
simply performing continuous optimization under the GRP, we
additionally employ a Metropolis-Hastings MC procedure
previously used by Domany and co-workers.34 This method is
comparable to the crank-shaft moves performed during
polymer simulations on a lattice, albeit modified to work on
off-lattice models such as those of interest here. Here, MC
moves are performed by selecting a bead (residue) and
subsequently performing a rotation about the axes connecting
to its neighbors. Such a move is rejected if a steric clash occurs,
but also if it fails the Metropolis update condition using the
GRP as a potential energy function. Such moves, combined
with the steric clash criterion, ensure that predominantly
physically sensible protein structures are generated; in turn this
ensures that the generation of Cartesian coordinates for
intermediate structures along the folding path is much less
prone to geometry optimization failures, and the back-mapping
procedure is more strongly constrained to generate relevant
low-energy structures.
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3. RESULTS AND DISCUSSION
In the previous sections, we have highlighted three algorithmic
challenges that we have identified in seeking to apply GDS to
fold larger protein structures. In this section, we will begin by
first validating these improvements, paying particular attention
to quantifying the impact of the new SCH metric and more
robust back-transformation.

Subsequently, and most importantly, we seek to validate our
entire simulation protocol by identifying the two mechanisms
associated with folding of the protein L/G. Here, we use our
improved GDS approach to generate a contact-map folding-
path ensemble from which we can clearly identify the two
alternative folding mechanisms reported using previous MD
simulations. This specific example, representing a larger
protein structure than previously studied with GDS, in
addition to multiple folding pathways, offers a strong test of
our GDS strategy. As such, the success reported below
supports the future expansion of this approach to fully
atomistic simulations.

3.1. Validating the SCH Metric. We begin by assessing
the use of our new SCH metric in quantifying the difference
between protein structures based solely on their contact-maps.
As a reminder, we anticipate that the new SCH metric should
better represent the Cartesian-space structural difference
between two protein structures, while only using contact-map
input information.

To assess the SCH metric, GDS simulations are not
necessary. Instead, it is sufficient to compare any protein
structure pairs, regardless of their origin. Here, we use the
predicted structures of three distinct proteins that were studied
in the critical assessment of protein structure prediction
(CASP14) exercise.35 The proteins selected - T1027 (168
residues), T1035 (102 residues), and T1040 (130 residues) -
were chosen as their sizes are representative of typical single-
chain proteins.36

To quantify the extent to which the SCH metric can capture
Cartesian-space structural differences, we compare it against
both the Hamming metric used in our previous work (eq 6)
and the well-known template modeling (TM) score.24 The
TM-score is one of the more common similarity metrics used
in protein structure comparison, and spans the range TM ∈ [0,
1], where a score of TM = 1 indicates a perfect structural
match and TM = 0 indicates no similarity. TM values above
0.5 generally suggest that two compared protein structure have
the same overall fold, whereas scores below 0.17 indicate
random similarity.37 The TM-score accounts for both the
length of the proteins and the distance between corresponding
residues, providing a length-independent measure that
emphasizes overall structural topology rather than local
deviations. This makes the TM-score a more reliable and
stable metric compared to the root-mean-square deviation
(RMSD), especially when comparing proteins of varying
lengths. As such, it is widely used in structural bioinformatics,
and competitions like CASP, to assess and rank the quality of
protein structure predictions. However, we note that the TM-
score is evaluated from knowledge of the Cartesian coordinates
of all residues in the proteins, and we have already noted that
this approach is not compatible with our GDS strategy.

In comparing the SCH and Hamming metrics, a key
measure is the extent to which the metric is correlated with the
TM score. Given that the TM score reflects protein similarity
in Cartesian structural space, we ideally seek a contact-map-

based metric that similarly exhibits strong correlation with the
TM score. Such correlation would indicate that the contact-
map metric correctly captures real-space structural similarity,
with the advantage of not actually requiring real-space
structures. To assess correlation here, we use the Spearman
rank-order correlation coefficient, a nonparametric measure
that assesses the strength and direction of the association
between two ranked variables.38 Unlike Pearson’s correlation,
which measures linear relationships, Spearman’s rank-order
correlation evaluates monotonic relationships, making it
suitable to measure the strength of the correspondence
between the TM-score and the contact-map metrics. The
Spearman coefficient ρ ranges from −1 to 1, with ρ = 1
indicating perfect positive monotonic relationship, ρ = −1
indicating perfect negative monotonic relationship, and ρ = 0
indicating no monotonic relationship.

The results of the comparison of SCH, Hamming and TM-
score are shown in Figure 4. The Spearman rank-order

correlation coefficient for Hamming Metric against the TM-
Score was −0.34, −0.65, −0.59 for the proteins T1040, T1035
and T1027, respectively. In contrast, our new SCH metric
performed much better, with Spearman coefficients of −0.78,
−0.84, and −0.88. Visually, (Figure 4) one can see where the
improvement comes from when the TM-Score is below 0.5 the
Hamming metric starts to fail to represent the structural
similarity, corresponding to the regime for which the fold is
likely to be of a different overall classification.37

3.2. Validation of Improved Reconstruction Algo-
rithm. Before attempting to generate candidate folding
pathways for the protein L/G, we first sought to validate the
new back-mapping algorithm described above. To do so, we

Figure 4. Scatter plots illustrating correlation between TM-score and
either Hamming score (left-column, red) or SCH metric (right-
column, green). Results are shown for three proteins from CASP14:
(a) T1040, (b) T1035, and (c) T1027.
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generated a database of potential protein-folding intermediate
structures for protein L/G. First, the global minimum of L/G
on the BLN PES was determined using SA global optimization
with restarts. Here, a velocity-Verlet integrator was used to
update the protein structure, using an Anderson thermostat. A
time step of 10−3 tu was used and a collision frequency of 10−3.
Each SA run started with an MD run of 10 tu, starting from a
temperature of 10 ϵ, which was subsequently halved ten times
and further simulated for 10 tu at each temperature. Finally,
the structure was geometry-optimized using L-BFGS39 and
subsequently stored in a database. Once this structure was
recorded in the database, it seeded another SA run as described
above; this restart process was repeated until the current best-
guess for the global minimum did not change for 20 such
repeats. To further verify that the global minimum was located,
we performed further SA optimizations starting from this
global minima, but with a broad range of starting temperatures;
again, the best-guess global minimum did not change further.
Furthermore, visual inspection of the structure in comparison
with the previous work of Head-Gordon and co-workers
confirmed a match. Overall, this search procedure generated a
database of 254 unique local minima for the L/G protein, and
these were subsequently used to assess the impact of changes
to our reconstruction algorithm.

We tested the three proposed reconstruction methods -
namely the original GRP-optimization strategy, optimization
under the new GRP potential, and the Dormany crankshaft
MC refinement - for the L/G protein system. Here, we sought
to investigate two related performance criteria in reconstruct-
ing Cartesian-space protein structures from contact-maps,
specifically: (i) the distance (or similarity) to the target
contact-map for which a Cartesian protein structure is sought,
and (ii) the impact of the starting configuration for structural
back-mapping.

To enable this comparison we used the database of local
minima (described above) as initial configurations. Following
calculation of the initial contact-map for each structure, we
subsequently simulated random bit-flip moves to modify these
contact-maps; this is essentially the same process as used to
generate folding intermediates in our GDS optimization
strategy, and is known to generate a mixture of physical and
nonphysical contact maps as targets for structure reconstruc-
tion. To further break down the impact of physical and
nonphysical target contact-maps on our reconstruction
procedures, we also perform a second test in which a short,
high-temperature MD trajectory is initiated from a starting
configuration before being subsequently subjected to geometry
optimization under the BLN PES. The contact map of the
resulting configuration - which, by construction, represents a
physically sensible contact-map - is then used as the
reconstruction target for further comparison of the three
reconstruction strategies.

To assess the different reconstruction methods, we begin by
randomly selecting a structure from the database of local
minima. The corresponding contact-map is calculated, then
subjected to a sequence of five random bit-flips; the resulting
contact-map is then considered as a new target for
reconstruction. As shown in Figure 5, the target contact-
maps generated by this strategy span a broad range of distances
from the initial graph. We subsequently use the three proposed
reconstruction methods, namely the gradient-based minimiza-
tion of both the old and new GRP, and the Dormany
crankshaft updates, to reconstruct Cartesian-space protein

structures from the target contact-maps. This procedure was
repeated 500 times to give a broad range of contact-maps to
help evaluate the different reconstruction strategies.

For each of the three different reconstruction methods,
Table 1 presents the percentage of calculations that exhibited

numerical instabilities or failures. Furthermore, we also report
the average distance between the final target contact-map and
the correct target contact-map for the 500 samples, as
measured using our SCH Metric.

From Table 1 it is clear that optimization under the original
GRP functional form is highly susceptible to numerical errors
for this complex protein reconstruction problem. As noted
above, this is primarily a result of the challenges in correctly
treating repulsion between nonbonded residue pairs. In
contrast, and somewhat surprisingly, the two new strategies
proposed here perform equally well, and appear to completely
eliminate the numerical instabilities that were prevalent in our
initial GRP functional form. It is clear that the original GRP-
based optimization strategy used in our initial report should
now be replaced with one of the new approaches described
here. Upon first look, it seems that minimizing the new GRP
function and the Domany crankshaft reconstruction ap-
proaches both seem equally well-suited to the problem at hand.

To further analyze the difference between the two new
reconstruction methods, we consider the impact of the
distance between the initial and target contact-maps on the
contact-map obtained from reconstruction. Here, we find that
the gradient-based GRP optimization and Dormany crankshaft
procedure differ greatly in performance. Figure 6 shows that
the crankshaft-move strategy often struggles to deal with large
proposed structural changes; specifically, when the target
contact-map is far from the contact-map chosen as the starting
point for refinement, the crankshaft strategy often struggles to
reduce the distance to the target contact-map. Overall, this is
perhaps expected, given that the crankshaft moves are local
moves (and limited to a finite number of MC steps), whereas

Figure 5. Histogram (and associated kernel density estimation
[KDE]) of SCH differences between the starting contact map and the
target contact map.

Table 1. Percentage of Numerical Failures Using Three
Different Reconstruction Procedures, and the
Reconstructed Structure’s Average SCH-Metric Distance to
the Target Contact Map

reconstruction method % numerical failures mean distance to target

original GRP optimization 85 0.066
new GRP optimization 0 0.065
crankshaft method 0 0.065
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the gradient-based optimization updates the whole protein
structure simultaneously. Another observation is that there is a
partitioning of the distribution for the GRP-minimized
structures, with one of the distributions distributed very
close to zero-distance from the target contact-map.

The source of this bimodal distribution becomes clear when
performing similar test using target contact maps that only
represent physically accessible contact-maps. To test the
reconstruction methods using only physical structures, we
perform an identical experiment as described above, but we
modified the procedure for proposing a contact-map change to
employ short, high temperature MD trajectories (instead of
bit-flips). Specifically, we ran velocity-Verlet integration with
an Anderson thermostat set to a high temperature of 1.0 ϵ. A
time step of 10−3 tu was used and a collision frequency of 10−3.
The dynamics were run for 10 tu before L-BFGS was used for
geometry optimization; the resulting protein structure was
subsequently used as a reconstruction target.

The results of this additional test (Figure 7) provide further
insight into the nature of the reconstruction methods. We find
that, for both methods, the distance to the target is effectively
reduced, especially in the case of the gradient-based GRP
optimization, which is found to be capable of reproducing the
target contact-map in the majority of cases. Furthermore,
Figure 7 also serves to explain the bimodality in the results of
Figure 6; specifically, it is clear that the data clustered around
very small shortest-hop distances (where the reconstruction

was essentially perfect) corresponded to physical contact maps,
whereas the larger distances comprised nonphysical maps.

3.3. Using GDS to Identify Folding Paths in Protein L/
G. Having shown how the algorithm improvements developed
here - namely better optimization metrics, better folding path
exploration moves, and better structural reconstruction - can
be independently assessed, the final objective of this articles is
to demonstrate that these collective improvements enable our
GDS strategy to tackle much more complex protein-folding
problems than previously accessible. As such, we turn to
consider the identification of folding paths for the L/G protein,
with particular emphasis on assessing whether GDS is now
capable of identifying the two distinct folding paths that are
accessible in this system.

To proceed, we follow the procedure that was outlined in
our previous work. First, we will build a data set of proposed
folding paths using GDS. Subsequently, we will energetically
filter to select a small number of folding paths that are deemed
representative of the full path-ensemble. Finally, we will cluster
these folding paths in an attempt to identify common
structural signatures of alternative folding paths.

Given that the L/G protein contains 56 residues, with 295
possible non-neighbor contacts (assuming neighbors are
separated by fewer than three peptide bonds), we highlight a
final further update to GDS that dramatically helps in
improving the efficiency of our folding-path search. We note
that, if we were to restrict graph-sequences such that a
predefined number of contact-map changes was enforced for
adjacent path intermediates, this may ultimately demand an

Figure 6. Summary of reconstruction methods. (a) Distribution
(shown as both histogram and KDE plots) of contact-map differences
between our reconstructed structures and the target contact-map
using either optimization under new GRP or Crankshaft moves. (b)
Scatter plot showing reconstruction error against the difference
between the target contact map and the initial structure. The green
dashed line is the diagonal, shown to highlight data trends.

Figure 7. Reconstruction performance when targeting only physical
contact-maps. (a) Distribution (shown as both histogram and KDE
plots) of contact-map differences between our reconstructed
structures and the target contact-map using either optimization
under new GRP or Crankshaft moves. (b) Scatter plot showing
reconstruction error against the difference between the target contact
map and the initial structure. The green dashed line is the diagonal,
shown to highlight data trends.
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unnecessarily long folding path. For example, if we limited
ourselves to generating paths that could only change a
maximum of two contact-map elements at each elementary
step, then identifying a folding sequence in the contact-map
space comprising 2295 elements might require an extremely
long allowed path and hence a challenging optimization
problem. Furthermore, as highlighted above, the number of
contacts changed is not necessarily indicative of the
significance of a given conformational change.

Instead, we chose to perform our GDS simulations with
minimal restrictions on the relationship between the adjacent
contact-maps. We do, however, restrict the final and starting
contact map, GI and GF, to be the contact maps of the initially
unfolded protein and the folded structure, respectively, using
GDS to optimize the intermediate contact maps. In order to
drive our GDS searches toward sequences of contact maps that
are more likely to be possess physically relevant intermediate
structures, we additionally modify the GDS SA optimization
function to the following:

f f f

H f k
H f k

G G G G G

G G
G G

( ) ( , ) ( , )

( ( , ) )
( ( , ) )

i i i i i

i i

i i

SCH 1 SCH 1

SCH 1 cont

SCH 1 cont

= | |

+
+

+

+ (9)

Here, f SCH is the SCH metric (eq 7), H is the Heaviside step
function, and kcont = 0.15. Discrete optimization of the folding
path under this function acts to steer the search away from
violation of connectivity criteria; the first term tries to make
sure an intermediate contact map Gi is approximately
equidistant between the previous and next contact map while
the later terms punishes a move that exceeds some threshold
kcont. The choice of kcont is based on Figure 4, where a value of
d = 0.15 typically corresponds to a TM-score of around 0.5, a
value that is usually indicative of a change in folding
topology.37

Using this improved GDS strategy, we generate 2877
independent folding paths that were constrained to contain
three intermediates (so total sequence-lengths of five). Each
path was initiated such that the starting contact-map
corresponded to a fully unfolded structure and the final
contact-map corresponded to the folded native state. The SCH
Metric between the fully unfolded structure and the final
structure was 0.53. Since we expect each transition to be
around the 0.15 difference mark, we chose to have 4
transitions. If fewer transitions were used, due to the metric
nature of the SCH function, we could not guarantee that each
consecutive difference would be 0.15 or less. Each GDS
optimization employed 104 MC updates with a linearly
decreasing temperature protocol starting at T = 10−3 reduced
units. Each MC update randomly selected an intermediate
graph, perturbed it with at least nb ∈ [1, 5] bit-flips chosen,
and then employed optimization under the new GRP to
reconstruct physically relevant protein intermediates.

To evaluate the relative importance of GDS-proposed
folding paths, we used additional information from nudged
elastic band (NEB) calculations10 between all consecutive
intermediates found in each folding sequence. However, we
found that initial interpolation was a significant challenge, even
when using interpolation schemes such as image-dependent
pair-potentials.40 This can be attributed to the complex nature
of the protein configurations, where typically several dihedral
angles must be collectively updated to provide a reasonable

low-energy starting path for NEB optimization. As a result, we
instead employed the freezing string method (FSM41), a
variant of the growing string method (GSM42), to generate
interpolated paths. Both GSM and FSM avoid generating a full
initial-interpolation path by instead iteratively advancing paths
from both ends of a transition. The key conceptual difference
between these approaches is that GSM aims to generate the
minimum energy path (MEP) while “growing” the path, and so
continually optimizes images along the path; in contrast, FSM
instead focuses on generating a reasonable initial starting point,
so only optimizes the single “advancing” image. Because of this
difference, FSM is more efficient in providing an initial
interpolation, which we subsequently use in a further NEB
refinement.

To advance images in FSM, we use linear synchronous
transit (LST) as described in the original FSM report.
However, one deviation that we do take from the original
FSM strategy is to add a further condition to the image-
advancement step in order to prevent generation of paths that
“skip through” steric clashes. Here, we define a force threshold
while advancing the nodes; if the force exceeds this threshold,
the image-advancement is frozen to provide better resolution
in high-energy regions.

All FSM calculations were preformed with a maximum of ten
images from each end-point; in other words, we obtain paths
parametrized by a maximum of 20 nodes. Each advance is
capped at a RMSD of 2 Å, or stopped when the RMS force is
greater than 100 ϵ Å−1. The same minimization protocol was
used as described in the original FSM paper.41 Once an FSM
calculation was complete, ten equidistant images where chosen
to represent the final path, based on LST interpolation of the
converged FSM path. These images were then used to perform
a NEB optimization using the QuickMin algorithm43 for a
maximum 104 iterations. The convergence criteria demanded a
RMS force threshold of 10−4 ϵ Å−1, and a maximum force of
10−2 ϵ Å−1 on each image.
3.3.1. Folding Path Analysis. The folded structure of the L/

G protein comprises two β-hairpins on both ends of an α-helix
structure (Figure 1). The two folding pathways detected
previously by Head-Gordon and co-workers were primarily
characterized using two order parameters that each measure
the degree of formation of one of the β-hairpins. These order
parameters are defined as

N
H r r1

( )
i j

ij ij
( , )

folded
a

a

= | |
| (10)

where β1 and β2 refer to the two respective β-hairpins. The
sum in eq 10 is performed over all N residue-pairs in the β-
hairpin in question, H is the Heaviside function, rij and rijfolded
are the distances between beads (i, j) in a given structure and
the folded structure, respectively, and we set ϵ = 0.2 to account
for small fluctuations away from the folded state. We note that
χ-values close to one correspond to folded configurations. To
enable comparison with previous work, we use the same order
parameter to characterize our GDS-generated folding paths.
Specifically, we seek to confirm whether we can observe the
two distinct folding paths that are characteristic of protein L/
G. These two paths differ in which of the two β-hairpins forms
first, and can be identified using eq 10. In one folding path, χβ d1

approaches a value of one, followed by χβ d2
approaching one; in

the alternative folding path, this sequence is reversed.
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The ensemble of 2877 folding paths generated by GDS are,
of course, not all equally likely to be observed. As we have
discussed previously, we expect that only the most energeti-
cally favorable paths will be representative of the true path-
ensemble. As such, we chose to further analyze the 100 folding
paths with the lowest values of the “floored” energy ΔE+ along
the folding path. For the sequence of structures along the NEB
converged folding path (r1, r2,..., rn), ΔE+ is defined by
summing over all energy barriers, as follows:

E V Vr r r r(( , ..., )) max(0, ( ) ( ))n
i

n

i i1
1

1

1=+

=
+

(11)

To identify path-similarities in our 100 selected folding paths,
we subsequently employed a clustering analysis. Here, we
employed the discrete Frećhet metric - shown to be a useful
metric in comparing MD trajectories21 and utilized in our
previous work6 - on the χβ order parameter description of the
pathways. The pairwise Frećhet distance matrix of all paths was
then used to identify similar paths using the hierarchical
density-based spatial clustering of applications with noise
(HDBSCAN) strategy.44

As shown in Figure 8, this analysis clearly demonstrates the
emergence of two distinct clusters of folding paths that are

identified as being similar according to the Frećhet distance
matrix. Furthermore, the off-diagonal elements of the path-
distance matrix also show that these two clusters are distinct
from each other, and also distinct from the remaining set of
unclustered trajectories.

To check whether these clusters do indeed correspond to
the two folding pathways found in previous work, we pruned
the trajectories to focus on the sections that first leave the
unfolded regime (χβ d1

, χβ d1
< 0.4) and ultimately lead to the

folded structure (χβd1
, χβ d2

> 0.8). The resulting kernel density
estimation (KDE) of the intermediate structures for the
folding paths, projected onto (β1, β2) are shown in Figure 9.
Satisfyingly, we find that the two clusters of folding paths
generated by GDS correspond to the two folding pathways
previously identified by Head-Gordon and co-workers.
Specifically, we find that one pathway exhibits an increase in
χβ d1

followed by increasing χβd2
, whereas the second pathway has

the progress of these two swapped around.
Finally, it is interesting to examine the characteristics of the

remaining low-energy folding paths that did not belong to the

two clear clusters. Figure 10 shows the same KDE projection of
the folding intermediates projected onto (β1, β2). This
projection indicates that these folding paths are still similar

Figure 8. Heatmap representation of the matrix of Frećhet distances,
reordered based on identified clusters. There are two, well-defined
self-similar clusters of folding paths (highlighted by red boxes).

Figure 9. KDE plots of the intermediate structures between the
unfolded regime (χβd1

< 0.4 and χβ d2
< 0.4) and folded regime (χβ d1

> 0.8
and χβ d2

> 0.8). Panels (a) and (b) show KDE plots generated using
intermediates from the two distinct clusters identified by the Frec̀het
distance matrix. We find that these two clusters correspond to the two
folding pathways identified by Head-Gordon and co-workers. The
structures on the right show representative intermediate structures, as
well as the final folded structure; in each case, the beads are colored
according to their secondary structure in the final state, with green
and blue highlighting the formation of β-sheets and red highlighting
the α-helix. These structures demonstrate that the two folding
pathways correspond to different folding sequences for the two β-
sheets.

Figure 10. KDE plot constructed using intermediates from
unclustered low-energy pathways. The density estimate appears
similar to the sum of densities from the two folding-path clusters;
closer inspection reveals that the sequences of intermediate exhibit
“reversals”, turning back along initial paths.
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to the clustered pathways. On closer inspection, we find that
these paths involve “reversals” in which the path begins to form
a particular β-hairpin, before reversing and subsequently
forming the other β-strand before passing on to the folded
state. Such paths are still clearly considered to be physically
accessible according to the criteria employed here, but suggest
that further pathway filtering based on such observations might
be useful.

To summarize, we have shown how refinements and
improvements of our original GDS strategy have enabled an
application to study a much more complex protein-folding
problem than previously accessible to our methodology, both
in terms of structure complexity and folding-path hetero-
geneity. We emphasize that our GDS approach requires neither
prior definition of order parameters or long MD trajectories,
instead seeking to operate predominantly in contact-map space
to accelerate determination of folding paths. The results
presented here show that GDS is a rapidly evolving strategy
that is growing in capability - our next target is to build on the
advances reported here to apply GDS to study protein folding
for fully atomistic models, and we hope to report on this
application in the near-future.

4. CONCLUSIONS
In this article, we put forward a graph-based strategy that can
identify the two distinct mechanisms involved in the folding of
the protein L/G. Determining these mechanisms previously
required extensive CG MD runs but, using our contact-map
path-sampling approach to circumvent the time-scale problem
of protein folding, we successfully identified the two possible
folding paths in this system. To realize this effort, we built on
our original GDS approach by tackling algorithmic challenges
and in the process were able to study larger and more complex
proteins. These challenges involved incorporating more
complex structural changes in our optimization strategy,
addressing the poor suitability of the Hamming metric as a
measure of structural difference, and dealing with the
numerically challenging back-transformation from contact
maps to Cartesian-space structure.

The bit-flipping perturbation of a graph sequences has
allowed us to better incorporate many-body graph-transitions
without requiring an increasingly large set of possible graph
updates. Furthermore, by addressing the deficiency of the
optimization metric in contact-map space by introducing the
SCH metric, we were also better equipped to identify more
natural folding paths with shorter overall graph-sequence
lengths. Finally, we examined alternative back-transformation
methods and found a suitable strategy that works well in
generating protein structures that are close to a target contact
map.

The advances demonstrated here greatly increase the
efficiency of our path-ensemble generation method, and have
enabled application to a more challenging problem. We can
now envisage a simulation setup in which postulated folding
paths may be used to form folding mechanism hypotheses,
combined with automated reaction-coordinate evaluation. As
noted above, we also plan to study all-atom protein models in
solvent environments; this will ultimately require better
consideration of free-energy calculation techniques.45−48 It is
clear that moving forward in this direction will require
approaches to estimate the free-energy barriers or transition
rates between contact-map-defined states that span from cheap
and inaccurate heuristics for virtually screening proposed

pathways to expensive and accurate methods to identify the
specific mechanisms at play. Furthermore, one may need to be
selective on which postulated paths should be used to perform
more detailed free energy evaluations and reaction rate
calculations. Balancing exploration of the path ensemble in
contact-map space (which is typically very fast due to using a
simple discretized structural representation) and accurate rate
calculations (which is typically more expensive relative, even
using barrier-based analyses such as NEB) will be an important
step moving forward. However, improving both steps stand as
a challenge for future work - but the results presented here
already serve to highlight the promise of contact-map-based
strategies for dealing with time-scale problems in molecular
simulation.
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